Monoclonal antibodies for use in detection of Bacillus and Clostridium spores.

Appl Environ Microbiol

Department of Food Science, North Carolina State University, Raleigh, USA.

Published: February 1997

Five monoclonal antibodies against bacterial spores of Bacillus cereus T and Clostridium sporogenes PA3679 were developed. Two antibodies (B48 and B183) were selected for their reactivity with B. cereus T spores, two (C33 and C225) were selected for their reactivity with C. sporogenes spores, and one (D89) was selected for its reactivity with both B. cereus and C sporogenes spores. The isotypes of the antibodies were determined to be immunoglobulin G2a (IgG2a) (B48), IgG1 (B183), and IgM (C33, C225, and D89). The antibodies reacted with spores of B. cereus T, Bacillus subtilis subsp. globigii, Bacillus megaterium, Bacillus stearothermophilus, C. sporogenes, Clostridium perfringens, and Desulfotomaculum nigrificans. Antibody D89 also reacted with vegetative cells of B. cereus and C. sporogenes. Analysis of B. cereus spore extracts showed that two of the antigens with which the anti-Bacillus antibodies reacted had molecular masses of 76 kDa and approximately 250 kDa. Immunocytochemical localization indicated that antigens with which B48, B183, and D89 react are on the exosporium of the B. cereus T spore. Antibody D89 reacted with the exosporium and outer cortex of C. sporogenes spores in immunocytochemical localization studies but did not react with extracts of C. sporogenes or B. cereus spores in Western blotting. Some C. sporogenes antigens were not stable during long-term storage at -20 degrees C. Antibodies B48, B183, and D89 should prove to be useful tools for developing immunological methods for the detection of bacterial spores.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC168338PMC
http://dx.doi.org/10.1128/aem.63.2.482-487.1997DOI Listing

Publication Analysis

Top Keywords

b48 b183
12
selected reactivity
12
sporogenes spores
12
spores
9
monoclonal antibodies
8
bacterial spores
8
cereus
8
sporogenes
8
antibodies b48
8
reactivity cereus
8

Similar Publications

Transition-metal doping leads to dramatic structural changes and results in novel bonding patterns in small boron clusters. Based on the experimentally derived mono-ring planar C9v Ta©B92- (1) and extensive first-principles theory calculations, we present herein the possibility of high-symmetry double-ring tubular D9d Ta@B183- (2) and C9v Ta2@B18 (3) and triple-ring tubular D9h Ta2@B27+ (4), which may serve as embryos of single-walled metalloboronanotube α-Ta3@B48(3,0) (5) wrapped up from the recently observed most stable free-standing boron α-sheet on a Ag(111) substrate with a transition-metal wire (-Ta-Ta-) coordinated inside. Detailed bonding analyses indicate that, with an effective dz2-dz2 overlap on the Ta-Ta dimer along the C9 molecular axis, both Ta2@B18 (3) and Ta2@B27+ (4) follow the universal bonding pattern of σ + π double delocalization with each Ta center conforming to the 18-electron rule, providing tubular aromaticity to these Ta-doped boron complexes with magnetically induced ring currents.

View Article and Find Full Text PDF

Five monoclonal antibodies against bacterial spores of Bacillus cereus T and Clostridium sporogenes PA3679 were developed. Two antibodies (B48 and B183) were selected for their reactivity with B. cereus T spores, two (C33 and C225) were selected for their reactivity with C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!