Rolipram was previously reported to elevate plasma cyclic adenosine 3',5'-monophosphate (cAMP) and inhibit serum tumor necrosis factor-alpha (TNF-alpha) production in mice. CP-80,633, a new cyclic nucleotide phosphodiesterase (PDE4) inhibitor, has been shown to augment intracellular cAMP levels and to inhibit TNFalpha release from human monocytes in vitro. This study was undertaken to determine the effect of p.o. CP-80,633 on plasma cAMP levels and lipopolysaccharide-induced TNFalpha production in mice with and without adrenal glands. CP-80,633 dose-dependently (3-32 mg/kg p.o.) elevated plasma cAMP levels and decreased systemic TNFalpha production in response to i.p. injection of lipopolysaccharide. Elevated plasma cAMP levels can be detected for up to 4 hr. CP-80,633 (10 mg/kg p.o.) caused a 6-fold increase in the plasma cAMP level, a 2-fold increase in the plasma epinephrine level and a greater than 95% reduction in TNFalpha production. Unlike CP-80,633, neither vinpocetine, dipyridamole, SKB-94,120 nor zaprinast, at 100 mg/kg p.o., modified the cAMP response, which suggests that this response is mediated by inhibition of PDE4. Adrenalectomy reduced the cAMP response and completely blocked the epinephrine response; however, the levels of plasma cAMP in the CP-80,633-treated mice (10 mg/kg p.o.) remained elevated (vehicle: 47.3 +/- 6.8 vs. CP-80,633: 98.4 +/- 10.3 pmol/ml, n = 7, P < .05). This effect is mimicked by treatment of control mice with propranolol, which demonstrates that beta adrenoreceptors contribute to the cAMP response. Removal of adrenal glands significantly increased the LPS-induced elevation of serum TNFalpha. The ability of CP-80,633 to block the TNFalpha response was only slightly affected by adrenalectomy (ED50 = 1.2 mg/kg in controls vs. 3.9 mg/kg in adrenalectomized mice). Taken together, these results show that CP-80,633, when given p.o. to mice, is capable of elevating plasma cAMP and inhibiting TNFalpha production and that adrenal catecholamines contribute significantly to the effect of CP-80,633 on the cAMP response but only slightly to its effect on the systemic TNFalpha response.

Download full-text PDF

Source

Publication Analysis

Top Keywords

plasma camp
24
tnfalpha production
20
camp levels
16
camp response
16
production mice
12
camp
12
cp-80633
10
plasma
9
tnfalpha
9
response
9

Similar Publications

Type 2 diabetes mellitus (T2DM) and obesity are critical global health issues with rising incidence rates. Glucagon-like peptide-1 (GLP-1) analogues have emerged as effective treatments due to their ability to regulate blood glucose levels and gastric emptying through central nervous signals involving hypothalamic receptors, such as leptin. To address the short plasma half-life of native GLP-1, a C-16 fatty acid was conjugated to lysine in the GLP-1 analogue sequence to enhance its longevity.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are associated with amyloid-β (Aβ) dysmetabolism, a pivotal factor in the pathogenesis of Alzheimer's disease (AD). This study unveiled a novel miRNA, microRNA-32533 (miR-32533), featuring a distinctive base sequence identified through RNA sequencing of the APPswe/PSEN1dE9 (APP/PS1) mouse brain. Its role and underlying mechanisms were subsequently explored.

View Article and Find Full Text PDF

Effects of tryptophan-selective lipidated GLP-1 peptides on the GLP-1 receptor.

J Endocrinol

January 2025

N Inagaki, Department of Diabetes, Endocrinology and Nutrition, Kyoto University, Kyoto, Japan.

Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1 RAs) are widely used as antidiabetic and anti-obesity agents. Although conventional GLP-1 RAs such as liraglutide and semaglutide are acylated with fatty acids to delay their degradation by dipeptidylpeptidase-4 (DPP-4), the manufacturing process is challenging. We previously developed selectively lipidated GLP-1 peptides at their only tryptophan residue (peptide A having one 8-amino-3,6-dioxaoctanoic acid (miniPEG) linker and peptide B having three miniPEG linkers).

View Article and Find Full Text PDF

Sarcopenia (SP), an age-associated condition marked by muscle weakness and loss has been strongly connected with metabolic factors according to substantial evidence. Nevertheless, the causal correlation between SP and serum metabolites, and the biological signaling pathways involved, is still not well understood. We performed a bidirectional two-sample Mendelian randomization (MR) analysis to examine the causal relationships between 1091 levels and 309 ratios of metabolites with SP traits, alongside investigating the relevant biological signaling pathways.

View Article and Find Full Text PDF

Chemoprotective Mechanism of Sodium Thiosulfate Against Cisplatin-Induced Nephrotoxicity Is via Renal Hydrogen Sulfide, Arginine/cAMP and NO/cGMP Signaling Pathways.

Int J Mol Sci

January 2025

Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra P.O. Box LG581, Ghana.

Cisplatin is a common and highly effective chemotherapeutic agent whose nephrotoxic side effect is well-characterized. Sodium thiosulfate (STS), an FDA-approved hydrogen sulfide (HS) donor drug, is emerging as a chemoprotective agent against cisplatin-induced nephrotoxicity (CIN). In this study, we investigated the chemoprotective mechanism of STS in a rat model of CIN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!