[3H]TCP and [3H]ifenprodil binding to N-methyl-D-aspartate (NMDA) receptors in rat forebrain membranes was used to compare the inhibition of haloperidol and trifluperidol with that of ifenprodil and eliprodil. In the [3H]TCP binding assay, inhibition curves of ifenprodil, eliprodil, haloperidol and trifluperidol revealed two affinity states in the presence of glutamate, glycine and spermidine. The potency of these agents to inhibit the high-affinity fraction of the binding agreed with the results of other studies investigating their potency to block glutamate-induced current at recombinant NR1a/NR2B NMDA receptors expressed in Xenopus oocytes. These agents also inhibited [3H]ifenprodil binding in a biphasic manner, whether in the absence or the presence of either the sigma site ligand GBR-12909 or spermidine. Spermidine reduced the fraction of high-affinity sites labeled with [3H]ifenprodil. The only alteration in the affinity was a decrease in the IC50 value of haloperidol to inhibit the high-affinity fraction of [3H]ifenprodil binding. GBR-12909 also reduced the fraction of [3H]ifenprodil sites inhibited by these compounds with high affinity, with no change in the affinity for either fraction. These data suggest that spermidine is neither a competitive antagonist at the fraction of the binding inhibited by these agents with high affinity, nor is this fraction of the binding to sigma sites. Haloperidol and trifluperidol represent a new class of agent that interacts at a site that is labeled by [3H]ifenprodil as well as [3H]TCP in rat brain membranes and that closely reflects ifenprodil's voltage-independent site on the recombinant NR1a/NR2B subtype of the NMDA receptor.
Download full-text PDF |
Source |
---|
Pharmaceuticals (Basel)
May 2024
Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia.
Astrocytes play a pivotal role in maintaining brain homeostasis. Recent research has highlighted the significance of palmitic acid (PA) in triggering pro-inflammatory pathways contributing to neurotoxicity. Furthermore, Genomic-scale metabolic models and control theory have revealed that metabolic switches (MSs) are metabolic pathway regulators by potentially exacerbating neurotoxicity, thereby offering promising therapeutic targets.
View Article and Find Full Text PDFIn Vivo
June 2020
Severn Health Solutions, Severna Park, MD, U.S.A.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense single-stranded RNA virus. It is contagious in humans and is the cause of the coronavirus disease 2019 (COVID-19) pandemic. In the current analysis, we searched for SARS-CoV-2 sequences within the human genome.
View Article and Find Full Text PDFAntimicrob Agents Chemother
September 2014
Department of Clinical Microbiology, Umeå University, Umeå, Sweden.
Candida species are the cause of 60% of all mycoses in immunosuppressed individuals, leading to ∼150,000 deaths annually due to systemic infections, whereas the current antifungal therapies either have toxic side effects or are insufficiently efficient. We performed a screening of two compound libraries, the Enzo and the Institute for Molecular Medicine Finland (FIMM) oncology collection library, for anti-Candida activity based on the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. From a total of 844 drugs, 26 agents showed activity against Candida albicans.
View Article and Find Full Text PDFNucl Med Biol
October 2012
Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1, Naka, Itabashi, Tokyo 173-0022, Japan.
Introduction: Carbon-11-labeled 1-[2-(3,4-dimethoxyphenyl)ethyl]-4-(3-phenylpropyl)piperazine ([(11)C]SA4503) was shown to be a promising PET ligand for mapping σ(1) receptors, and was applied to human subjects. However, an in vitro study indicated that SA4503 also binds to the emopamil binding protein (EBP), vertebral Δ8-Δ7 sterol isomerase. To our knowledge, no information is available about the possibility of [(11)C]SA4503 binding to EBP in the brain in vivo.
View Article and Find Full Text PDFDrug Metab Dispos
January 2010
Discovery DMPK, AstraZeneca Research and Development, SE-43183 Mölndal, Sweden.
The neurotoxic side effects observed for the neuroleptic agent haloperidol have been associated with its pyridinium metabolite. In a previous study, a silicon analog of haloperidol (sila-haloperidol) was synthesized, which contains a silicon atom instead of the carbon atom in the 4-position of the piperidine ring. In the present study, the phase I metabolism of sila-haloperidol and haloperidol was studied in rat and human liver microsomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!