Upon prolonged treatment with various antiretroviral nucleoside analogs such as 3'-azido-3'-deoxythymidine, 2',3'-dideoxyinosine, 2',3'-dideoxycytidine, (-)- beta-L-2', 3'dideoxy-3'thiacytidine and 2',3'-didehydro-3'-deoxythymidine, selection of human immunodeficiency virus type 1 (HIV-1) strains with mutations in the reverse transcriptase (RT) gene has been reported. We designed a reverse hybridization line probe assay (LiPA) for the rapid and simultaneous characterization of the following variations in the RT gene: M41 or L41; T69, N69, A69, or D69; K70 or R70; L74 or V74; V75 or T75; M184, I184, or V184; T215, Y215, or F215; and K219, Q219, or E219. Nucleotide polymorphisms for codon L41 (TTG or CTG), T69 (ACT or ACA), V75 (GTA or GTG), T215 (ACC or ACT), and Y215 (TAC or TAT) could be detected. In addition to the codons mentioned above, several third-letter polymorphisms in the direct vicinity of the target codons (E40, E42, K43, K73, D76, Q182, Y183, D185, G213, F214, and L214) were found, and specific probes were selected. In total, 48 probes were designed and applied to the LiPA test strips and optimized with a well-characterized and representative reference panel. Plasma samples from 358 HIV-infected patients were analyzed with all 48 probes. The amino acid profiles could be deduced by LiPA hybridization in an average of 92.7% of the samples for each individual codon. When combined with changes in viral load and CD4+ T-cell count, this LiPA approach proved to be useful in studying genetic resistance in follow-up samples from antiretroviral agent-treated HIV-1-infected individuals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC163703PMC
http://dx.doi.org/10.1128/AAC.41.2.284DOI Listing

Publication Analysis

Top Keywords

probe assay
8
human immunodeficiency
8
immunodeficiency virus
8
virus type
8
reverse transcriptase
8
transcriptase gene
8
assay rapid
4
rapid detection
4
detection drug-selected
4
drug-selected mutations
4

Similar Publications

A TaqMan-MGB Probe Quantitative PCR Assay Detecting Hematodinium perezi.

J Fish Dis

January 2025

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute (YSFRI), Chinese Academy of Fishery Sciences (CAFS), Qingdao, Shandong, China.

Hematodinium perezi, a pathogenic dinoflagellate, is one of major epidemiological agents that lead to severe losses of cultured marine crustaceans in China. This study aimed to develop a novel, sensitive and specific detection method qualified for early surveillance and control of the disease caused by H. perezi.

View Article and Find Full Text PDF

Leveraging RIBOTAC technology: Fluorescent RNase L probes for live-cell imaging and function analysis.

Heliyon

January 2025

The Institute for Drug Research of the School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.

RNA-targeting small molecules, particularly RIBOnuclease TArgeting Chimeras (RIBOTACs), represent a powerful and promising therapeutic approach by selectively degrading RNAs through ribonuclease (RNase) recruitment. Despite their potential, the development of effective RNase recruitment tools is still in its early stages and remains a critical area of research. Ribonuclease L (RNase L) is a key ribonuclease targeted by RIBOTACs, yet the tools available for studying RNase L are limited.

View Article and Find Full Text PDF

Objective: To establish a rapid detection method for canine using recombinase-aided amplification (RAA) technology.

Methods: The outer membrane protein 25 gene fragment (Omp25) of canis was targeted. Primers and fluorescent probes were designed and synthesized, and recombinant plasmids were constructed as standards.

View Article and Find Full Text PDF

Background: Resistance to chemoimmunotherapy in patients with advanced non-small cell lung cancer (NSCLC) necessitates effective prognostic biomarkers. Although F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) has shown potential for efficacy assessment, it has been mainly evaluated in immuno-monotherapy setting, lacking elaborations in the scenarios of immunotherapy combined with chemotherapy. To tackle this dilemma, we aimed to build a non-invasive PET/CT-based model for stratifying tumor heterogeneity and predicting survival in advanced NSCLC patients undergoing chemoimmunotherapy.

View Article and Find Full Text PDF

Background: High mobility group box 1 (HMGB1) plays an essential role in various pathological conditions, including inflammation, fibrosis, autoimmune diseases, and carcinogenesis. The quantification of HMGB1 in body fluids holds promise for clinical applications.

Objectives: This study aimed to isolate high-affinity single-stranded DNA (ssDNA) aptamers that target HMGB1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!