The expression of murine thymidine kinase (TK) is strictly dependent on the growth state of the cell. Expressing epitope-tagged TK in LTK cells, we have previously shown that low TK enzyme levels in G0 cells are in part due to a dramatic decrease in TK protein stability. Here we report that thymidine, one of the substrates of TK, is able to counteract the growth-arrest-specific decrease of TK expression. While TK mRNA levels and TK translation rate are almost unaffected by thymidine, the TK protein half-life rose more than sixfold after addition of the nucleoside to resting cells. The effect of thymidine is reversible and is independent of its presence during the protein synthesis of TK. Dideoxythymidine, a specific inhibitor of the TK enzyme activity, also has the capacity to increase TK protein levels in G0 cells, indicating that the substrate itself exerts the stabilising effect on the TK protein.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jmbi.1996.0721DOI Listing

Publication Analysis

Top Keywords

thymidine kinase
8
levels cells
8
thymidine
6
protein
6
thymidine inhibits
4
inhibits growth-arrest-specific
4
growth-arrest-specific degradation
4
degradation thymidine
4
kinase protein
4
protein transfected
4

Similar Publications

Background: Thymidine kinases (TKs) are key enzymes involved in DNA synthesis and repair, with alterations in their expression associated with various cancers. Thymidine kinase 1 (TK1) and TK2 are cytosolic enzyme proteins that catalyze the addition of a gamma-phosphate group to thymidine. The existing literature on TK1 in cervical squamous cell carcinoma (CESC) fails to address the clinical role of TK1 overexpression and its possible molecular mechanism in CESC.

View Article and Find Full Text PDF

ERK-USP9X-coupled regulation of thymidine kinase 1 promotes both its enzyme activity-dependent and its enzyme activity-independent functions for tumor growth.

Nat Struct Mol Biol

January 2025

Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Thymidine kinase 1 (TK1), a crucial enzyme in DNA synthesis, is highly expressed in various cancers. However, the mechanisms underlying its elevated expression and the implications for tumor metabolism remain unclear. Here we demonstrate that activation of growth factor receptors enhances TK1 expression.

View Article and Find Full Text PDF

Background: We previously described the enrichment of plasma exosome metabolites in CRPC, PCa, and TFC cohorts, and found significant differences in pyrimidine metabolites. The PMGs is associated with the clinical prognosis of several cancers, but its biological role in PCa is still unclear.

Methods: This study extracted 98 reliable PMGs, and analyzed their somatic mutations, expression levels, and prognostic significance.

View Article and Find Full Text PDF

Herpes simplex virus type 1 (HSV-1) acyclovir (ACV) resistance is acquired by mutations in the viral thymidine kinase (TK) or DNA polymerase (DNApol) genes. We previously obtained an ACV-resistant clone (HSV-1_VZV_TK_clone α) by sequential passages of HSV-1_VZV-TK, a recombinant virus which lacked its endogenous TK activity and instead expressed the varicella-zoster virus (VZV) TK ectopically. HSV-1_VZV_TK_clone α had been generated using an HSV-1_BAC in the presence of increasing concentrations of ACV.

View Article and Find Full Text PDF

Rationale And Objectives: Mixed ground-glass nodules (mGGNs) are highly malignant and common nonspecific lung imaging findings. This study aimed to explore whether combining quantitative and qualitative spectral dual-layer detector-based computed tomography (SDCT)-derived parameters with serological tumor abnormal proteins (TAPs) and thymidine kinase 1 (TK1) expression enhances invasive mGGN diagnostic efficacy and to develop a joint diagnostic model.

Materials And Methods: This prospective study included patients with mGGNs undergoing preoperative triple-phase contrast-enhanced SDCT with TAP and TK1 tests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!