We have expressed the mitogenic signaling proteins Src, Ras, Raf-1, Mek (MAP kinase kinase), and Erk (MAP kinase) in baculovirus-infected Sf9 insect cells in order to study a potential role for the chaperone hsp90 in formation of multiprotein complexes. One such complex obtained by immunoadsorption with anti-Ras antibody of cytosol prepared from cells simultaneously expressing Ras, Raf, Mek, and Erk contained Ras, Raf, and Erk. To detect directly the protein-protein interactions involved in forming multiprotein complexes, we combined cytosols from single infections in vitro in all possible combinations of protein pairs. We detected complexes between Ras.Raf, Ras.Src, Raf.Mek, and Raf.Src, but no complex containing Erk was obtained by mixing cytosols. Thus, cellular factors appear to be required for assembly of the Erk-containing multiprotein complex. One cellular factor thought to be involved in signaling protein complex formation is the chaperone hsp90, and we show that Src, Raf, and Mek are each complexed with insect hsp90. Treatment of Sf9 cells with geldanamycin, a benzoquinone ansamycin that binds to hsp90 and disrupts its function, did not decrease coadsorption of either Raf or Erk with Ras, although it did decrease the level of cytosolic Raf. To study geldanamycin action, we treated rat 3Y1 fibroblasts expressing v-Raf and showed that the antibiotic blocked assembly of Raf.hsp90 complexes at an intermediate stage of assembly where Raf is still bound to the p60 and hsp70 components of the assembly mechanism. As in Sf9 cells, Raf levels decline with geldanamycin treatment of 3Y1 cells. To determine if geldanamycin affects mitogenic response, we treated HeLa cells with epidermal growth factor (EGF) and showed that geldanamycin treatment decreased EGF signaling and decreased the level of Raf protein without affecting the EGF-mediated increase in Raf kinase activity. We conclude that hsp90 is not required for forming complexes between the mitogenic signaling proteins or for Raf kinase activity and that EGF signaling is decreased indirectly by geldanamycin because the antibiotic increases degradation of Raf and perhaps other components of the signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.272.7.4013DOI Listing

Publication Analysis

Top Keywords

raf
13
raf kinase
12
raf levels
8
epidermal growth
8
growth factor
8
signaling
8
mitogenic signaling
8
signaling proteins
8
map kinase
8
chaperone hsp90
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!