The study of the population in the region contaminated with heavy metal salts has revealed high incidence of nephropathies even in preschool children manifesting initially in the majority of cases with hematuria. All the patients had the signs of urinary dysembryogenesis and marked membranopathological process. Long-term exposure to even small doses of heavy metals is supposed to cause nephropathy. Urinary disease arose more frequently in those genetically predisposed to renal and urinary tract affections. Because urolithiasis is a frequent result of dismetabolic nephropathy in endemic regions, it is advisable to perform active monitoring of children with environmental nephropathy using membrane-stabilizing measures. Optimal for these purpose could be xidifon. Further studies are needed to elucidate the problem of rapid elimination of heavy metals with chelating agents.

Download full-text PDF

Source

Publication Analysis

Top Keywords

region contaminated
8
contaminated heavy
8
heavy metal
8
metal salts
8
heavy metals
8
[nephropathies region
4
heavy
4
salts possibilities
4
possibilities therapeutic
4
therapeutic prophylactic
4

Similar Publications

Introduction: China implemented a dynamic zero-COVID strategy to curb viral transmission in response to the coronavirus disease 2019 (COVID-19) pandemic. This strategy was designed to inhibit mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19. This study explores the dynamics of viral evolution under stringent non-pharmaceutical interventions (NPIs) through real-world observations.

View Article and Find Full Text PDF

The widespread application of swine-farming wastewater to soil and water is increasingly contributing to heavy metal contamination, posing significant environmental risks. This study investigated the concentrations of eight heavy metals in swine-farming wastewater following different treatment processes, and assessed their ecological risks in Sichuan Province, China. The findings revealed that zinc, copper and nickel exhibited the highest concentrations, potentially causing heavy or strong contamination levels and leading to heavy or slight ecological risks.

View Article and Find Full Text PDF

Background: Human milk banks (HMBs) offer the best feed for neonates after mother's own milk (MOM), especially when MOM is insufficient. Although HMBs are founded on standard protocols, contamination and wastage of milk due to positive milk cultures remain a problem. Present study was planned as a quality improvement (QI) initiative to reduce culture rates at the HMB.

View Article and Find Full Text PDF

Recently, thallium (Tl) contamination at trace levels has gained worldwide attention, particularly in the remote ore-smelting regions of China. To effectively eliminate the residual target Tl(I) ions, one of the best strategies is to develop novel adsorbents with high selectivity. In this study, we selected silicate mineral waste (SMW) and chitosan (CTS) to synthesize a low-cost composite adsorbent for the removal of trace Tl(I).

View Article and Find Full Text PDF

Ocean current modulation of the spatial distribution of microplastics in the surface sediments of the Beibu Gulf, China.

J Hazard Mater

January 2025

School of Chemistry and Environment, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China.

Microplastic pollution, a major global environmental issue, is gaining heightened attention worldwide. Marginal seas are particularly susceptible to microplastic contamination, yet data on microplastics in marine sediments remain scarce, especially in the Beibu Gulf. This study presents a large-scale investigation of microplastics in the surface sediments of the Beibu Gulf to deciphering their distribution, sources and risk to marginal seas ecosystems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!