Ultraviolet (UV) microbeam irradiations of crane-fly spermatocyte and newt epithelial spindles severed kinetochore fibres (KT-fibres), creating areas of reduced birefringence (ARBs): the remnant KT-fibre consists of two "stubs," a pole-stub attached to the pole and a KT-stub attached to the kinetochore. KT-stubs remained visible but pole-stubs soon became undetectable [Forer et al., 1996]. At metaphase, in both cell types the KT-stub often changed orientation immediately after irradiation and its tip steadily moved poleward. In spermatocytes, the chromosome attached to the KT-stub remained at the equator as the KT-stub elongated. In epithelial cells, the KT-stub sometimes elongated as the associated chromosome remained at the equator; other times the associated chromosome moved poleward together with the KT-stub, albeit only a short distance toward the pole. When an ARB was generated at anaphase, chromosome(s) with a KT-stub often continued to move poleward. In spermatocytes, this movement was accompanied by steady elongation of the KT-stub. In epithelial cells, chromosomes accelerated polewards after irradiation until the KT-stubs reached the pole, after which chromosome movement returned to normal speeds. In some epithelial cells fine birefringent fibres by chance were present along one edge of ARBs; these remnant fibres buckled and broke as the KT-stub and chromosome moved polewards. Similarly, KT-stubs that moved into pole stubs (or astral fibres) caused the pole stubs (or astral fibres) to bend sharply from the point of impact. Our results contradict models of chromosome movement that postulate that force is generated by the kinetochore disassembling the KT-fibre. Instead, these results suggest that poleward directed forces act on the KT-fibre and the KT-stub and suggest that continuity of microtubules between kinetochore and pole is not obligatory for achieving anaphase motion to the pole.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(SICI)1097-0169(1997)36:2<136::AID-CM4>3.0.CO;2-7 | DOI Listing |
J Mammary Gland Biol Neoplasia
January 2025
Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.
Abnormal melanin synthesis within melanocytes can result in pigmentary skin disorders. Although pigmentation alterations associated with inflammation are frequently observed, the precise reason for this clinical observation is still unknown. More specifically, although many cytokines are known to be critical for inflammatory skin processes, it is unclear how they affect epidermal melanocyte function.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Premier Dermatology, Ashburn, VA, USA.
Pilomatrix carcinoma (PC) is a rare malignant adnexal tumor originating from follicular matrix cells primarily impacting Caucasian males. This review provides a comprehensive analysis of scientific literature on PC through an exploration of 206 cases reported between 1980 and 2024. We discuss the epidemiology, clinical presentation, histopathology, and diagnostic challenges of PC, and explore various treatment methods for this rare malignancy as well as their associated outcomes.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
We have recently shown that fluoxetine (FX) suppressed polyinosinic-polycytidylic acid-induced inflammatory response and endothelin release in human epidermal keratinocytes, via the indirect inhibition of the phosphoinositide 3-kinase (PI3K)-pathway. Because PI3K-signaling is a positive regulator of the proliferation, in the current, highly focused follow-up study, we assessed the effects of FX (14 µM) on the proliferation and differentiation of human epidermal keratinocytes. We found that FX exerted anti-proliferative actions in 2D cultures (HaCaT and primary human epidermal keratinocytes [NHEKs]; 48- and 72-h; CyQUANT-assay) as well as in 3D reconstructed epidermal equivalents (48-h; Ki-67 immunohistochemistry).
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Dermatology and Venereology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt.
Both the surgical non-cultured melanocyte-keratinocyte transplant procedure (MKTP) and intradermal injection of 5-Fluorouracil (5-FU) are effective in the treatment of vitiligo. Intrablisters injection of MKTP was done in one study with better results than MKTP application after ablative CO2 laser of the reciepient area. However, intrablister injection of 5-FU was not done before.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!