Synthesis and characterization of composite nucleic acids containing 2', 5'-oligoriboadenylate linked to antisense DNA.

Antisense Nucleic Acid Drug Dev

Section on Biomedical Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0805, USA.

Published: April 1997

Composite nucleic acids, known as 2-5A antisense chimeras, cause the 2-5A-dependent ribonuclease (RNase L) to catalyze the specific cleavage of RNA in cell free systems and in intact cells. Such 2-5A antisense chimeras are 5'-monophosphorylated, 2,'5'-linked oligoadenylates covalently attached to antisense 3',5'-oligodeoxyribonucleotides by means of a linker containing two residues of 1,4-butanediol phosphate. Here we report a fully automated synthesis of 2-5A antisense chimeras on a solid support using phosphoramidite methodology with specific coupling time modifications and their subsequent purification by reverse-phase ion-pair and anion exchange HPLC. Purified 2-5A antisense chimeras were characterized by [1H]NMR and [31P]NMR, MALDIMS, and capillary gel electrophoresis. The synthetic 2',5'-linked oligoadenylate showed no phosphodiester isomerization to 3',5' during or after synthesis. In addition, we have developed facile methodologies to characterize the chimeras using digestion with various hydrolytic enzymes including snake venom phosphodiesterase I and nuclease P1. Finally, Maxam-Gilbert chemical sequencing protocols have been developed to confirm the entire sequence of these chimeric oligonucleotides.

Download full-text PDF

Source
http://dx.doi.org/10.1089/oli.1.1996.6.247DOI Listing

Publication Analysis

Top Keywords

2-5a antisense
16
antisense chimeras
16
composite nucleic
8
nucleic acids
8
antisense
6
chimeras
5
synthesis characterization
4
characterization composite
4
acids 5'-oligoriboadenylate
4
5'-oligoriboadenylate linked
4

Similar Publications

Efficient Inhibition of SARS-CoV-2 Using Chimeric Antisense Oligonucleotides through RNase L Activation*.

Angew Chem Int Ed Engl

September 2021

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing, 100191, China.

There is an urgent need to develop antiviral drugs and alleviate the current COVID-19 pandemic. Herein we report the design and construction of chimeric oligonucleotides comprising a 2'-OMe-modified antisense oligonucleotide and a 5'-phosphorylated 2'-5' poly(A) (4A ) to degrade envelope and spike RNAs of SARS-CoV-2. The oligonucleotide was used for searching and recognizing target viral RNA sequence, and the conjugated 4A was used for guided RNase L activation to sequence-specifically degrade viral RNAs.

View Article and Find Full Text PDF

Telomeres, the specialized structures that comprise the ends of chromosomes, form a closed structure, or t-loop, that is important in preventing genomic instability. Forced modulation of this structure, via overexpression of a dominant-negative form of telomere repeat binding factor 2, a protein critical for maintaining t-loop structure, for example, can result in the activation of DNA-damage responses, and ultimately cellular senescence or apoptosis. This response is also seen in normal somatic cells, where telomeres steadily decrease in length as cellular proliferation occurs owing to inefficient replication of terminal telomeric DNA.

View Article and Find Full Text PDF

This unit provides protocols for the synthesis and characterization of 2-5A-antisense nucleic acids. These chimeric oligonucleotides consist of 2',5'-phosphodiester-linked oligoadenylates ligated to 3',5'-deoxyribonucleotides and are readily prepared using phosphoramidite chemistry on CPG solid supports. The 3',5'-deoxyribonucleotide functions as the antisense domain to target a given mRNA sequence, while the 2',5'-phosphodiester-linked oligoadenylate serves to locally activate 2-5A-dependent RNase L, causing the targeted sequence to be cleaved.

View Article and Find Full Text PDF

Telomerase, a ribonucleoprotein enzyme, is detected in the vast majority of cancers, including malignant gliomas, but not in most normal somatic cells. To inhibit telomerase function effectively, we have adopted the 2',5'-oligoadenylate (2-5A) antisense system. 2-5A is a mediator of one pathway of interferon actions by activating RNase L, resulting in single-stranded RNA cleavage.

View Article and Find Full Text PDF

We recently showed that therapy with 2'-5'-oligoadenylate (2-5A)-linked antisense against human telomerase RNA component (2-5A-anti-hTR) is a novel telomerase-targeting strategy against malignant gliomas. In this study, we investigated conventional chemotherapeutic agents and gamma-irradiation (IR) to determine whether they could augment the efficacy of 2-5A-anti-hTR against these tumors in vitro and in vivo. Treatment with 2-5A-anti-hTR inhibited the viability of U373-MG and U87-MG malignant glioma cells in a dose-dependent manner; the antitumor effect resulted from induction of apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!