The effect of continuous exposure to ozone on the absorption of ozone in the conducting airways of human lungs was investigated with a bolus-response method. Eleven healthy nonsmoking college students (8 males, 3 females) were exposed at rest for 2 h on 3 separate days to air containing 0 ppm, 0.12 ppm, and 0.36 ppm ozone. A personal inhalation chamber equipped with a head-only clear plastic dome was used for exposure. Every 30 min a subject removed the dome and orally inhaled a series of five ozone-air boluses, each in a separate breath. Penetration of the boluses distal to the lips was targeted in the range of 70-120 ml (corresponding to the central conducting airways). By integrating the inhaled and exhaled-ozone concentration curves, we obtained the absorbed fraction (lambda) and the dispersion (sigma2) of the ozone bolus for each test breath. In addition, the subtraction of baseline measurements made just before exposure enabled us to determine the changes in absorbed fraction (deltalambda) and in dispersion (deltasigma2) that resulted from exposure alone. Absorbed fraction decreased, but sigma2 increased during O3 exposure, and the differences in deltalambda and in deltasigma2 between breathing air and exposure to either 0.12 ppm or 0.36 ppm O3 were significant. We concluded that exposure of the conducting airways to O3 reduced their capacity to absorb O3, possibly by the depletion of biochemical substrates that are normally oxidized by O3.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/00039896.1996.9936042 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!