The basic electrical rhythm (BER) of the gastrointestinal tract creates minute magnetic fields that have been measured in animals using a Superconducting QUantum Interference Device (SQUID) gradiometer. The aim of this study was to measure noninvasively the biomagnetic fields of human stomach and small intestine. Twenty-one human volunteers were studied using a 37-channel SQUID gradiometer positioned over the epigastrium and umbilicus. In one volunteer additional biomagnetic recordings were performed in order to map the spatial variation of the biomagnetic fields. Cyclical waveforms consistent with gastric BER [3.0+/-0.5 cycles per minute (cpm)] and small intestine BER (10.26+/-1.74 cpm) were seen in the epigastrium and umbilicus, respectively. The mapping study identified the expected frequency gradient (12.0 cpm in duodenum, 11.3 cpm in jejunum, to 9.7 cpm in ileum) within the small intestine. Noninvasive recordings of human gastric and small intestinal BER can be obtained using a SQUID gradiometer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02100117DOI Listing

Publication Analysis

Top Keywords

small intestine
16
squid gradiometer
12
biomagnetic fields
8
epigastrium umbilicus
8
small
5
magnetoenterography meng
4
meng noninvasive
4
noninvasive measurement
4
measurement bioelectric
4
bioelectric activity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!