Controversies about amyotrophic lateral sclerosis.

Neurologia

Neurological Institute, Columbia Presbyterian Medical Center New York, NY 10032, USA.

Published: December 1996

Controversy regarding amyotrophic lateral sclerosis (ALS) concerns aspects of relatively little consequence (such as the role of lead intoxication or trauma in the pathogenesis of the disease) and others of greater relevance, particularly the two following questions regarding treatment options: 1) Are we in a new era of therapy for ALS? Prior to the 1990's no controlled study showed consistent benefit from any of the treatments tried. We have now had announcements of benefit for four entirely different agents: riluzole, insulin-like growth hormone, brain derived neurotrophic hormone and gabapentin. The benefit, at most, is marginal or questionable. The effect is of statistical significance but of little clinical relevance, and 2) what is the role of peripheral nerves in ALS? The syndrome of multifocal motor neuropathy and conduction block (MMNCB) shares some clinical data (active tendon jerks in weak, wasted and fasciculating muscles) and pathological features (anterior horn cell loss and glions) with "typical" ALS. This is relevant because MMNCB is reversible with immunoglobulin therapy. The rigid separation between ALS (a disease of the motor neuron perikaryon) and MMNCB (a disease of the motor neuron axon) is no longer tenable.

Download full-text PDF

Source

Publication Analysis

Top Keywords

amyotrophic lateral
8
lateral sclerosis
8
disease motor
8
motor neuron
8
controversies amyotrophic
4
sclerosis controversy
4
controversy amyotrophic
4
sclerosis als
4
als concerns
4
concerns aspects
4

Similar Publications

Amyotrophic Lateral Sclerosis and Parkinson's Disease: Brain Tissue Transcriptome Analysis Reveals Interactions.

Mol Neurobiol

January 2025

Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.

This study utilises amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) human brain samples from the GEO database and employs differential expression gene (DEG) analysis to identify genes that are pivotal in both neurodegenerative diseases. Through in depth GO and KEGG enrichment analyses, we elucidated the biological functions and potential pathways associated with these DEGs. Furthermore, by constructing protein‒protein interaction networks, we highlight the significance of shared DEGs in both cellular physiology and disease contexts.

View Article and Find Full Text PDF

Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disease primarily affecting motor neurons, leading to progressive muscle atrophy and paralysis. This review explores the role of Schwann cells in ALS pathogenesis, highlighting their influence on disease progression through mechanisms involving demyelination, neuroinflammation, and impaired synaptic function. While Schwann cells have been traditionally viewed as peripheral supportive cells, especially in motor neuron disease, recent evidence indicates that they play a significant role in ALS by impacting motor neuron survival and plasticity, influencing inflammatory responses, and altering myelination processes.

View Article and Find Full Text PDF

Neurological disorders (NDs), such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and schizophrenia, represent a complex and multifaceted health challenge that affects millions of people around the world. Growing evidence suggests that disrupted neuronal calcium signalling contributes to the pathophysiology of NDs. Additionally, calcium functions as a ubiquitous second messenger involved in diverse cellular processes, from synaptic activity to intercellular communication, making it a potential therapeutic target.

View Article and Find Full Text PDF

Objective: Approximately 20% of familial cases of amyotrophic lateral sclerosis (ALS) are caused by mutations in the gene encoding superoxide dismutase 1 (SOD1). Epidemiological data have identified traumatic brain injury (TBI) as an exogenous risk factor for ALS; however, the mechanisms by which TBI may worsen SOD1 ALS remain largely undefined.

Methods: We sought to determine whether repetitive TBI (rTBI) accelerates disease onset and progression in the transgenic SOD1 mouse ALS model, and whether loss of the primary regulator of axonal degeneration sterile alpha and TIR motif containing 1 (Sarm1) mitigates the histological and behavioral pathophysiology.

View Article and Find Full Text PDF

Primary lateral sclerosis (PLS) is a motor neuron disease (MND) which mainly affects upper motor neurons. Within the MND spectrum, PLS is much more slowly progressive than amyotrophic laterals sclerosis (ALS). `Classical` ALS is characterized by catabolism and abnormal energy metabolism preceding onset of motor symptoms, and previous studies indicated that the disease progression of ALS involves hypothalamic atrophy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!