Virulence attributes of Escherichia coli isolated from dairy heifer feces.

Vet Microbiol

Enteric Diseases and Food Safety Research Unit, USDA, Agricultural Research, Service, Ames, IA 50010, USA.

Published: December 1996

Escherichia coli isolates from 1,305 (of 6,894) fecal samples collected during the 1991-1992 USDA, Animal and Plant Health Inspection Service, National Health Monitoring System, Diary Heifer Evaluation Project were tested for virulence attributes associated with human enterohaemorrhagic E. coli (EHEC) and the enterotoxin commonly associated with diarrhoea in newborn calves. Single, random isolates from each heifer were hybridized to probes derived from the 60 mDa EHEC plasmid (CVD 419), E. coli attaching and effacing gene (eae), Shiga-like toxin (slt) genes I and II, and E. coli heat-stable enterotoxin a (STaP). Seventy-seven of the 1305 isolates (5.9%) were slt-positive. Most (81.8%) slt-positive E. coli were also CVD 419 and eae-positive. Only 2 of the slt-positive E. coli isolates were STaP-positive.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0378-1135(96)01261-8DOI Listing

Publication Analysis

Top Keywords

virulence attributes
8
escherichia coli
8
coli isolates
8
cvd 419
8
slt-positive coli
8
coli
7
attributes escherichia
4
coli isolated
4
isolated dairy
4
dairy heifer
4

Similar Publications

The enduring pathogenicity of can be attributed to its lipid-rich cell wall, with mycolic acids (MAs) being a significant constituent. Different MAs' fluidity and structural adaptability within the bacterial cell envelope significantly influence their physicochemical properties, operational capabilities, and pathogenic potential. Therefore, an accurate conformational representation of various MAs in aqueous media can provide insights into their potential role within the intricate structure of the bacterial cell wall.

View Article and Find Full Text PDF

Using a murine osteomyelitis model, we recently demonstrated that and mutants generated in the USA300 strain LAC are attenuated to a greater extent than an isogenic mutant and that this can be attributed to a significant extent to the increased production of extracellular proteases in both mutants. Based on this, we used a mass-based proteomics approach to compare the proteomes of LAC, its isogenic , , and mutants, and isogenic derivatives of all four of these strains unable to produce the extracellular proteases aureolysin, SspA, SspB, ScpA, or SplA-F. This allowed us to identify proteins that were present in reduced amounts in , and / mutants owing to the increased production of extracellular proteases.

View Article and Find Full Text PDF

The effects of occupational aluminum exposure on blood pressure and blood glucose in workers - A longitudinal study in northern China.

Toxicol Lett

January 2025

Sinopharm Tongmei General Hospital, Shanxi Health Commission Key Laboratory of Nervous System Disease Prevention and Treatment, Datong, Shanxi 037003, China. Electronic address:

Background: Trace element and metal exposure is closely related to the occurrence of chronic diseases, particularly affecting blood pressure and blood glucose. Current studies suggest that heavy metal exposure is a risk factor for hypertension and diabetes. Aluminum can enter the human body through daily life and occupational exposure from food, environment, drugs, and other sources, affecting the cardiovascular, endocrine, and other systems.

View Article and Find Full Text PDF

Small RNAs (sRNAs) are a class of molecules capable of perceiving environmental changes and exerting post-transcriptional regulation over target gene expression, thereby influencing bacterial virulence and host immune responses. is a pathogenic bacterium that poses a significant threat to aquatic animal health. However, the regulatory mechanisms of sRNAs in .

View Article and Find Full Text PDF

Unveiling the multifaceted potential of amyloid fibrils: from pathogenic myths to biotechnological marvels.

Biophys Rev

December 2024

Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, 201313 Noida, India.

Amyloid fibrils, historically stigmatized due to their association with diseases like Alzheimer's and Parkinson's, are now recognized as a distinct class of functional proteins with extraordinary potential. These highly ordered, cross-β-sheet protein aggregates are found across all domains of life, playing crucial physiological roles. In bacteria, functional amyloids like curli fibers are essential for surface adhesion, biofilm formation, and viral DNA packaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!