Raf-1 is a serine/threonine kinase that has been identified as a component of growth factor-activated signal transduction pathways, and is required for growth factor-induced proliferation of leukemic cell lines and colony formation of hematopoietic progenitors stimulated with single colony-stimulating factors, which promote the growth of committed hematopoietic progenitor cells. However, it is known that the most primitive progenitors in the bone marrow require stimulation with multiple cytokines to promote cell growth. We have determined that c-raf antisense oligonucleotides inhibit the growth of murine lineage-negative progenitors stimulated with two-, three- and four-factor combinations of growth factors, including GM-CSF + interleukin (IL)- 1, IL-3 + steel factor (SLF), IL-3 + IL-11 + SLF and IL-3 + IL-11 + SLF + G-CSF. In addition, c-raf antisense oligonucleotides inhibit the synergistic response of the MO7e human progenitor cell line induced to proliferate with IL-3 + SLF (99%) or GM-CSF + SLF (99%). In contrast, c-raf antisense oligonucleotides only partially inhibited day 14 colony formation of CD34+ human progenitors stimulated with IL-3 + SLF (50%) or GM-CSF + SLF (55%) but completely inhibited day 7 colony formation. However, pulsing CD34+ cells with additional oligonucleotides on day 7 of the colony assay further inhibited day 14 colony formation (70%-80%). Furthermore, a comparison of the effect of c-raf antisense oligonucleotides on the synergistic response of normal human fetal liver cells in [3H]thymidine incorporation assays and colony assays showed strong inhibition in short-term proliferation assays and partial inhibition in 14-day colony assays. Taken together, these results demonstrate that partial inhibition of colony formation of primitive human progenitors stimulated with multiple growth factors is a result of the length (14 days) of the human colony assay and does not represent a differential requirement of primitive progenitors for Raf-1. Thus Raf-1 is required for the proliferation and differentiation of primitive hematopoietic progenitor cells stimulated with synergistic combinations of cytokines.

Download full-text PDF

Source
http://dx.doi.org/10.1002/stem.150063DOI Listing

Publication Analysis

Top Keywords

progenitors stimulated
20
colony formation
20
c-raf antisense
16
antisense oligonucleotides
16
day colony
16
inhibited day
12
colony
9
growth
8
required growth
8
growth factor-induced
8

Similar Publications

Introduction: -rearrangements define a subclass of acute leukemias characterized by a distinct gene expression signature linked to the dysfunctional oncogenic fusion proteins arising from various chromosomal translocations involving the (also known as ) gene. Research on the disease pathomechanism in -rearranged acute leukemias has mainly focused on the upregulation of the stemness-related genes of the -family and their co-factor .

Results: Here we report the and fusion gene-dependent downregulation of , a TGF-β signaling axis transcription factor.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) play important roles in the occurrence and development of hepatocellular carcinoma (HCC) and are a key component of the immunosuppressive microenvironment. However, the origin of CAFs has not been fully elucidated. We employed single-cell sequencing technology to identify the dynamic changes in different subsets of fibroblasts at different time points in rat primary HCC model.

View Article and Find Full Text PDF

Role of transforming growth factor-β1 in regulating adipocyte progenitors.

Sci Rep

January 2025

Research Center for Pre-Disease Science, Faculty of Education and Research Promotion, University of Toyama, Toyama, 930-0194, Japan.

Adipose tissue (AT) metabolism involves coordinating various cells and cellular processes to regulate energy storage, release, and overall metabolic homeostasis. Therein, macrophage and its cytokine are important in controlling tissue homeostasis. Among cytokines, the role of transforming growth factor-β1 (Tgf-β1), a cytokine abundantly expressed in CD206 M2-like macrophage and correlated with the expansion of AT and fibrosis, in AT metabolism, remains unknown.

View Article and Find Full Text PDF

Posterior Limbal Mesenchymal Stromal Cells Promote Proliferation and Stemness of Transition Zone Cells: A Novel Insight Into Corneal Endothelial Rejuvenation.

Invest Ophthalmol Vis Sci

January 2025

Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.

Purpose: Progenitors for the corneal endothelium have been identified in the transition zone (TZ), but their cellular interactions remain undefined. Posterior limbal mesenchymal stromal cells (P-LMSCs) may support TZ cells in the posterior limbus. This study aims to characterize P-LMSCs and investigate their effects on TZ cells.

View Article and Find Full Text PDF

Autologous hematopoietic stem cell transplantation is used to restore bone marrow function after high-dose chemotherapy. For apheresis, granulocyte colony-stimulating factor (G-CSF) is standard of care, but obtaining sufficient stem cells can be challenging. Other mobilization agents include plerixafor and PEGylated G-CSF (PEG-G-CSF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!