The effects of recombinant thrombopoietin (TPO) alone and in combination with erythropoietin (EPO) and early-acting cytokines such as interleukin 3 (IL-3), stem cell factor (SCF) and GM-CSF on highly purified mobilized human CD34+ progenitor cells were studied in a serum-depleted culture system. Eight leukapheresis samples were cultured for seven days and analyzed; aliquots were replated and re-evaluated on day 12. Three-color flow cytometry was used together with morphologic analysis to determine proliferation and megakaryocytic or erythroid maturation. TPO alone was sufficient for cell survival and proliferation in serum-depleted medium. In the absence of other growth factors, almost all CD34+ cells differentiated along the megakaryocytic pathway within 12 days. Concomitantly, the progenitor cells gradually acquired the morphologic features of mature megakaryocytes. After exposure to TPO for one week, 50% of the cells still expressed CD34; by day 12 the remaining CD34+ cells (11%) were all coexpressing CD41. TPO alone did not support proliferation of glycophorin-A-positive cells. The addition of TPO to early-acting cytokines (EPO, GM-CSF, SCF and/or IL-3) not only increased the overall megakaryocyte expansion, but also generated a different maturation pattern of the CD41+ megakaryocyte progenitors. It further doubled the number of erythroid cells and c-kit+ cells in the second week of culture. Interestingly, the overall number of CD34+ cells was increased about fivefold when TPO was added to the early-acting cytokines, with a marked expansion of the CD34+/CD41+ and CD34+/CD117+ subpopulations. TPO can augment the pool of committed progenitors, thereby increasing the number of its own target cells and the number of EPO-responsive cells. These properties make TPO an interesting cytokine for the ex vivo expansion of human progenitor cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/stem.150018DOI Listing

Publication Analysis

Top Keywords

early-acting cytokines
16
progenitor cells
16
cells
13
cd34+ cells
12
effects recombinant
8
combination erythropoietin
8
cd34+ progenitor
8
serum-depleted medium
8
tpo
8
tpo early-acting
8

Similar Publications

Umbilical cord blood (UCB) serves as a source of hematopoietic stem and progenitor cells (HSPCs) utilized in the regeneration of hematopoietic and immune systems, forming a crucial part of the treatment for various benign and malignant hematological diseases. UCB has been utilized as an alternative HSPC source to bone marrow (BM). Although the use of UCB has extended transplantation access to many individuals, it still encounters significant challenges in selecting a histocompatible UCB unit with an adequate cell dose for a substantial proportion of adults with malignant hematological diseases.

View Article and Find Full Text PDF

Generation and functional evaluation of novel monoclonal antibodies targeting glycosylated human stem cell factor.

Appl Microbiol Biotechnol

December 2022

UNL, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Biotechnological Development Laboratory, Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242 (S3000ZAA), Santa Fe, Argentina.

Human stem cell factor (hSCF) is an early-acting growth factor that promotes proliferation, differentiation, migration, and survival in several tissues. It plays a crucial role in hematopoiesis, gametogenesis, melanogenesis, intestinal motility, and in development and recovery of nervous and cardiovascular systems. Potential therapeutic applications comprise anemia treatment, mobilization of hematopoietic stem/progenitor cells to peripheral blood, and increasing gene transduction efficiency for gene therapy.

View Article and Find Full Text PDF
Article Synopsis
  • * The study focuses on how the proteins occludin (ocln), caveolin-1 (cav-1), and Alix work together in a multi-protein complex that regulates each other's expression, influencing the BBB's integrity.
  • * Findings suggest that HIV-1 infection disrupts the stability of this protein complex, leading to reduced infection levels and changes in inflammatory responses in the brain, which helps explain HIV-1 pathology in the central nervous system.
View Article and Find Full Text PDF

Erythropoietin is a major regulator of thrombopoiesis in thrombopoietin-dependent and -independent contexts.

Exp Hematol

August 2020

UTCBS CNRS UMR 8258, INSERM U1267, Faculté de Pharmacie de Paris, Université de Paris, Paris, France; NOKAD, Evry, France. Electronic address:

Thrombopoietin (TPO), through activation of its cognate receptor Mpl, is the major regulator of platelet production. However, residual platelets observed in TPO- and Mpl-loss-of-function (LOF) mice suggest the existence of an additional factor to TPO in platelet production. As erythropoietin (EPO) exhibited both in vitro megakaryocytic potential, in association with other early-acting cytokines, and in vivo platelet activation activity, we sought to investigate its role in this setting.

View Article and Find Full Text PDF

Background: High-mobility group box 1 (HMGB1) is one of the delayed pro-inflammatory cytokines produced in the later stages of pathogenesis and plays an important role in the progression of various inflammatory and autoimmune diseases. High-mobility group box 1 is able to stimulate interaction between integrins and cell adhesion molecules to facilitate cell-cell aggregation in "tissue-specific" endothelium; however, whether and how HMGB1 affects the adhesive capability of early acting immune cells in bloodstream remains largely unknown.

Methods: Human peripheral blood samples were collected from healthy adult donors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!