Synaptotagmin I is an abundant synaptic vesicle protein that has an essential function in mediating Ca2+-triggered neurotransmitter release. We have analyzed the distribution of four neural synaptotagmin isoforms during postnatal development of the rat CNS by in situ hybridization. Synaptotagmin I, II, III, and IV genes have distinct patterns of spatiotemporal expression except in cerebellum granule cells, where the four transcripts were detected during the formation of parallel fiber/Purkinje cell synapses. Throughout development synaptotagmin I mRNAs were widely expressed in brain, whereas synaptotagmin II transcripts were predominant in spinal cord. At all stages synaptotagmin III mRNAs were expressed uniformly in most neurons examined, although at a low level. Synaptotagmin I, II, and III gene expressions mainly increased during development and persisted in adulthood, mirroring neuronal differentiation. Conversely, synaptotagmin IV transcripts were predominant during perinatal development in a heterogeneous population of neurons and subsequently were expressed uniformly at a low level. Intense labeling was observed in the hippocampal CA3 field and in the subiculum, but not in the CA1 field, of the newborn rat. In cerebral cortex, lamina-specific labeling was detected with a high expression in cell layer V. Only a small number of Purkinje cell clusters were labeled in the flocculus and paraflocculus of the cerebellum. Heterogeneous sets of neurons expressing synaptotagmin IV gene also were observed in spinal cord. We thus speculate that synaptotagmin IV may a play a role in the development of the mammalian nervous system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6793732 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.17-04-01206.1997 | DOI Listing |
J Neurochem
January 2025
Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, Scotland, UK.
Synaptic vesicle protein 2A (SV2A) is an abundant synaptic vesicle cargo with an as yet unconfirmed role in presynaptic function. It is also heavily implicated in epilepsy, firstly being the target of the leading anti-seizure medication levetiracetam and secondly with loss of function mutations culminating in human disease. A range of potential presynaptic functions have been proposed for SV2A; however its interaction with the calcium sensor for synchronous neurotransmitter release, synaptotagmin-1 (Syt1), has received particular attention over the past decade.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China.
The co-existence and co-transmission of neuropeptides and small molecule neurotransmitters within individual neuron represent a fundamental characteristic observed across various species. However, the differences regarding their in vivo spatiotemporal dynamics and underlying molecular regulation remain poorly understood. Here, we develop a GPCR-activation-based (GRAB) sensor for detecting short neuropeptide F (sNPF) with high sensitivity and spatiotemporal resolution.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Institute of Physical Chemistry, University of Göttingen, Göttingen, Germany.
We present two innovative approaches to investigate the dynamics of membrane fusion and the strength of protein-membrane interactions. The first approach employs pore-spanning membranes (PSMs), which allow for the observation of protein-assisted fusion processes. The second approach utilizes colloidal probe microscopy with membrane-coated probes with reconstituted proteins.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
Vesicle fusion induces neurotransmitter release, orchestrated by synaptotagmin-1 (Syt-1) as a Ca sensor. However, the precise molecular mechanisms of Syt-1 remain controversial, with various and competing models proposed based on different ionic strengths. Syt-1, residing on the vesicle membrane alongside anionic phospholipids such as phosphatidylserine (PS), undergoes Ca-induced binding to its own vesicle membrane, known as the cis-interaction, which prevents the trans-interaction of Syt-1 with the plasma membrane.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Departments of Neurology, and Anatomy and Cell Biology, Wayne State University School of Medicine, University Health Center, Detroit, MI, USA.
Molecular dynamics (MD) simulations enable in silico investigation of the dynamic behavior of proteins and protein complexes. Here, we describe MD simulations of the SNARE bundle forming the complex with the neuronal proteins Synaptotagmin-1 (Syt1) and Complexin (Cpx). Syt1 is the synaptic vesicle (SV) protein that serves as the neuronal calcium sensor and triggers synaptic fusion upon calcium binding, and this process is promoted and accelerated by Cpx.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!