The amino acid sequence of rat N-syndecan core protein was deduced from the cloned cDNA sequence. The sequence predicts a core protein of 442 amino acids with six structural domains: an NH2-terminal signal peptide, a membrane distal glycosaminoglycan attachment domain, a mucin homology domain, a membrane proximal glycosaminoglycan attachment domain, a single transmembrane domain, and a noncatalytic COOH-terminal cytoplasmic domain. Transfection of human 293 cells resulted in the expression of N-syndecan that was modified by heparan sulfate chain addition. Heparitinase digestion of the expressed proteoglycan produced a core protein that migrated on SDS-polyacrylamide gels at an apparent molecular weight of 120, 000, identical to N-syndecan synthesized by neonatal rat brain or Schwann cells. Rat genomic DNA coding for N-syndecan was isolated by hybridization screening. The rat N-syndecan gene is comprised of five exons. Each exon corresponds to a specific core protein structural domain, with the exception of the fifth exon, which contains the coding information for both the transmembrane and cytoplasmic domains as well as the 3'-untranslated region of the mRNA. The first intron is large, with a length of 22 kilobases. The expression of N-syndecan was investigated in late embryonic, neonatal, and adult rats by immunoblotting and Northern blotting analysis. Among the tissues and developmental stages studied, high levels of N-syndecan expression were restricted to the early postnatal nervous system. N-syndecan was expressed in all regions of the nervous system, including cortex, midbrain, spinal cord, and peripheral nerve. Immunohistochemical staining revealed high levels of N-syndecan expression in all brain regions and fiber tract areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.272.5.2873 | DOI Listing |
J Cheminform
January 2025
School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea.
G protein-coupled receptors (GPCRs) play vital roles in various physiological processes, making them attractive drug discovery targets. Meanwhile, deep learning techniques have revolutionized drug discovery by facilitating efficient tools for expediting the identification and optimization of ligands. However, existing models for the GPCRs often focus on single-target or a small subset of GPCRs or employ binary classification, constraining their applicability for high throughput virtual screening.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China.
Aberrant autophagy in vascular smooth muscle cells (VSMCs) is associated with the progression of vascular remodeling diseases caused by neointimal hyperplasia. Platelet-derived growth factor-BB (PDGF-BB)-induced vascular remodeling is accompanied by autophagy activation, however, the involvement of circular RNAs (circRNAs) remains unclear. Here, we show the role of PDGF-BB-regulated hsa_circ_0001304 (circ-1304) in neointimal hyperplasia and its potential involvement in VSMC autophagy, while also elucidating the potential mechanisms.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
Carcinoembryonic antigen (CEA) and C-reactive protein (CRP) are biomacromolecules known as cancer and inflammatory markers. Thus, they play a crucial role in early cancer diagnosis, post-treatment recurrence detection, and tumor risk assessment. This paper describes the development of an ultrasensitive and selective imprinted paper-based analytical device (PAD) as impedance sensor for determination of CEA and CRP in serum samples for point-of-care testing (POCT).
View Article and Find Full Text PDFNature
January 2025
Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
Caspase recruitment domains (CARDs) and pyrin domains are important facilitators of inflammasome activity and pyroptosis. Following pathogen recognition by nucleotide binding-domain, leucine-rich, repeat-containing (NLR) proteins, CARDs recruit and activate caspases, which, in turn, activate gasdermin pore-forming proteins to induce pyroptotic cell death. Here we show that CARD domains are present in defence systems that protect bacteria against phage.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
ETV6::RUNX1 is the most common fusion gene in childhood acute lymphoblastic leukemia (ALL) associated with favorable prognosis, but the optimal therapy for this subtype remains unclear. Profiling the genomic and pharmacological landscape of 194 pediatric ETV6::RUNX1 ALL cases, we uncover two transcriptomic clusters, C1 (61%) and C2 (39%). Compared to C1, the C2 subtype features higher white blood cell counts and younger age at diagnosis, as well as better early treatment responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!