The research discussed in this article aimed to characterize better the biodistribution, excretion and radiation dosimetry of the single photon emission computed tomography (SPECT) D2 Dopamine receptor radioligand [123I]IBF. Following administration of 111 +/- 12 MBq [123I]IBF, seven healthy human subjects were scanned serially with a whole body imager over a 48-h period. Transmission images were obtained with a scanning line source for attenuation correction of the emission images. Urine was collected for 48 h to measure the fraction of activity voided by the renal system. Radiation absorbed dose estimates were performed using biokinetic modeling and the Medical Internal Radiation Dose (MIRD) schema. Highest absorbed doses were to the kidney (0.13 +/- 0.02 mGy/MBq) and urinary bladder wall (0.11 +/- 0.01 mGy/MBq). The effective dose equivalent was 0.041 +/- 0.005 mSv/MBq. Peak brain uptake represented 8% of the injected activity. Rapid urinary excretion minimized the absorbed dose to most tissues. The mean cumulative urinary excretion fraction was 69%. Thus [123I]IBF is a promising SPECT agent for imaging the D2 dopamine receptor in humans with high brain uptake and favorable dosimetry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0969-8051(95)02003-9DOI Listing

Publication Analysis

Top Keywords

dopamine receptor
12
spect dopamine
8
receptor radioligand
8
radioligand [123i]ibf
8
absorbed dose
8
brain uptake
8
urinary excretion
8
human biodistribution
4
biodistribution dosimetry
4
dosimetry spect
4

Similar Publications

Orexin signaling in the ventral tegmental area and substantia nigra promotes locomotion and reward processing, but it is not clear whether dopaminergic neurons directly mediate these effects. We show that dopaminergic neurons in these areas mainly express orexin receptor subtype 1 (Ox1R). In contrast, only a minor population in the medial ventral tegmental area express orexin receptor subtype 2 (Ox2R).

View Article and Find Full Text PDF

Dopamine critically regulates neuronal excitability and promotes synaptic plasticity in the striatum, thereby shaping network connectivity and influencing behavior. These functions establish dopamine as a key neuromodulator, whose release properties have been well-studied in rodents but remain understudied in nonhuman primates. This study aims to close this gap by investigating the properties of dopamine release in macaque striatum and comparing/contrasting them to better-characterized mouse striatum, using ex vivo brain slices from male and female animals.

View Article and Find Full Text PDF

Dopamine Drives Feedforward Inhibition to Orexin Feeding System, Mediating Weight Loss Induced by Morphine Addiction.

Adv Sci (Weinh)

January 2025

Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.

Feeding behavior changes induced by opioid addiction significantly contribute to the worsening opioid crisis. Activation of the reward system has shown to provoke binge eating disorder in individuals with opioid use disorder, whereas prolonged opioid exposure leads to weight loss. Understanding the mechanisms underlying these phenomena is essential for addressing this pressing societal issue.

View Article and Find Full Text PDF

Mu opioid receptors expressed in striatal D2 medium spiny neurons have divergent contributions to cocaine and morphine reward.

Neuroscience

January 2025

Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA; Waggoner Center for Alcohol & Addiction Research, The University of Texas at Austin, Austin, TX, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA. Electronic address:

While our understanding of the neurobiological mechanisms underlying cocaine and opiate reward has historically been dopamine-focused, evidence from genetic and pharmacological approaches indicates that µ-opioid receptors (MORs) in the striatum are important contributors. Within the striatum, MORs are expressed in both dopamine D1-receptor and D2-receptor expressing GABAergic medium spiny neurons (MSNs), as well as in interneurons and various afferents. Thus, it remains unclear how these distinct MOR populations regulate drug reward.

View Article and Find Full Text PDF

Rationale And Objectives: In vivo receptor interactions vary as a function of behavioral endpoint, with key differences between reflexive and non-reflexive measures that assess the motivational aspects of pain and pain relief. There have been no assessments of D dopamine agonist / mu opioid receptor (MOR) agonist interactions in non-reflexive behavioral measures of pain. We examined the hypothesis that D/MOR mixtures show enhanced effectiveness in blocking pain depressed behaviors while showing decreased side effects such as sedation and drug reward.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!