Data quality objectives for surface-soil cleanup operation using in situ gamma spectrometry for concentration measurements.

Health Phys

Health Physics Program, G.W. Woodruff School of Mechanical Engineering , Georgia Institute of Technology, Atlanta 30332-0405, USA.

Published: February 1997

In situ gamma spectrometry is an efficient method for monitoring the progress of cleanup activities for radioactive contaminants in surface soil and for evaluating the attainment of cleanup standards. However, desired data precision and accuracy must be specified for such a detection system prior to the operation to ensure that the level of uncertainty associated with the concentration measurements is acceptable. A method for developing data quality objectives is described in this paper for in situ gamma spectrometry to achieve numerical goals for data precision and accuracy for cleanup operations. Concentration measurement for a radionuclide at its cleanup level must have a precision commensurate with the importance of cleanup decisions. The 95% lower limit of detection of the system is suggested to be about one tenth the expected system response at the cleanup level. The count time required to achieve the preferred 95% lower limit of detection, and hence the desired precision, can then be determined. The accuracy error arises from the overall calibration factor, which relates the detector responses (e.g., count rate) to physical quantities of interest (e.g., radionuclide soil concentration). The major source of error for the calibration factor using in situ gamma spectrometry is the misidentification of the type of the depth profile of radionuclide concentration in soil. If surrogate radionuclides are used, such as 241Am for plutonium, the variation in the concentration ratio would be another significant source of error. Soil sampling programs performed prior to a cleanup operation will greatly reduce the accuracy error for an in situ detection system, and the analysis of system errors may determine the degree of sampling required. The planning of such a program is discussed in the study. Uncertainty analysis using a Latin Hypercube sampling technique for the calibration factor is also demonstrated. The quantitative result of the uncertainty analysis is useful for determining a nuclide's maximum peak count rate using gamma spectrum that ensures the attainment of the cleanup standard for that nuclide with a pre-specified confidence level (e.g., 95%). The cleanup operation of 239,240Pu in surface soil in the safety shot areas at the Nevada Test Site serves as an example to illustrate the data quality objectives development.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00004032-199702000-00013DOI Listing

Publication Analysis

Top Keywords

situ gamma
16
gamma spectrometry
16
data quality
12
quality objectives
12
cleanup operation
12
detection system
12
calibration factor
12
cleanup
10
concentration measurements
8
surface soil
8

Similar Publications

An in-situ forming controlled release soft hydrogel-based C5a peptidase drug delivery system to treat psoriasis.

Int J Pharm

January 2025

Department of Chemical Sciences, Bernal Institute, University of Limerick, Ireland; SSPC Science Foundation Ireland Research Centre for Pharmaceuticals, University of Limerick, Ireland. Electronic address:

The potent pro-inflammatory cytokine, interferon gamma (IFN-γ), is an enticing therapeutic target because of its accelerator role in several acute and chronic inflammatory processes. In this work, poloxamer 407 is developed as an in-situ gelling polymer for a long-acting formulation to deliver a serine protease, C5a peptidase (ScpA) from Streptococcus pyogenes. ScpA is well known for its activity against the complement factor C5a but has also recently been shown to cleave IFN-γ in vitro into inactive fragments.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is selectively permeable, but it also poses significant challenges for treating CNS diseases. Low-intensity focused ultrasound (LiFUS), paired with microbubbles is a promising, non-invasive technique for transiently opening the BBB, allowing enhanced drug delivery to the central nervous system (CNS). However, the downstream physiological effects following BBB opening, particularly secondary responses, are not well understood.

View Article and Find Full Text PDF

Engineers, geomorphologists, and ecologists acknowledge the need for temporally and spatially resolved measurements of sediment clogging (also known as colmation) in permeable gravel-bed rivers due to its adverse impacts on water and habitat quality. In this paper, we present a novel method for non-destructive, real-time measurements of pore-scale sediment deposition and monitoring of clogging by using wire-mesh sensors (WMSs) embedded in spheres, forming a smart gravel bed (GravelSens). The measuring principle is based on one-by-one voltage excitation of transmitter electrodes, followed by simultaneous measurements of the resulting current by receiver electrodes at each crossing measuring pores.

View Article and Find Full Text PDF

To reveal the microstructural evolution and stress-strain distribution of 780 MPa-grade ferrite/martensite dual-phase steel during a uniaxial tensile deformation process, the plastic deformation behavior under uniaxial tension was studied using in situ EBSD and crystal plastic finite element method (CPFEM). The results showed that the geometrically necessary dislocations (GND) in ferrite accumulated continuously, which is conducive to the formation of grain boundaries, but the texture distribution did not change significantly. The average misorientation angle decreased and the proportion of low-angle grain boundaries increased with the increase of strain.

View Article and Find Full Text PDF

In(III)-Catalyzed 1,2-Hydrophosphorylation of 3-Alkynyl-3-hydroxyisoindolinones to 3,3-Disubstituted Isoindolinones Featuring Both Phosphoryl and Alkynyl Groups at the C3-Position.

J Org Chem

January 2025

Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China.

We report a highly regioselective 1,2-addition of P(O)-H compounds to the in situ generated β,γ-alkynyl-α-ketimine derived from 3-alkynyl-3-hydroxyisoindolinones, which provided a general protocol for the preparation of 3,3-disubstituted isoindolinones featuring both phosphoryl and alkynyl groups at a quaternary carbon center. The use of only 2-5 mol % of an inexpensive catalyst (In(ClO)·8HO or Bi(OTf)) allowed the smooth output of the desired products under mild conditions (25 °C, 0.5-24 h) with a broad substrate scope (35 examples) in up to >99% yield.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!