The growth inhibition of mutans streptococci is one of the proposed mechanisms of action of xylitol, a caries-preventive natural carbohydrate sweetener. Xylitol is taken up and accumulated as non-metabolizable, toxic xylitol phosphate via a constitutive fructose PTS, and selects, during in vitro growth at the expense of glucose, for natural xylitol-resistant mutants that lack constitutive fructose PTS activity. Since long-term xylitol consumption leads to the emergence of xylitol-resistant mutans populations in humans in an oral environment containing sugars of dietary origin, we wanted to test the hypothesis that xylitol-resistant cells could be selected from mutans streptococci strains during in vitro growth on fructose, sucrose, or lactose. Three laboratory strains and three fresh mutans streptococcal isolates were repeatedly transferred in trypticase-yeast extract medium supplemented with glucose, fructose, sucrose, or lactose in the presence and absence of xylitol. Depending on the growth sugar, the presence of xylitol resulted in the selection of xylitol-resistant populations for several of the six strains tested, but not necessarily in the presence of all four sugars. All six strains rapidly became xylitol-resistant when grown on glucose in the presence of xylitol. All three fresh isolates became xylitol-resistant after 9 to 16 transfers in the presence of fructose or sucrose plus xylitol, while none of the laboratory strains became xylitol-resistant after 16 transfers in the presence of these sugars. The growth rates of 12 xylitol-resistant mutants in the presence of eight sugars suggested the existence of various types of xylitol-resistant mutants. The data partially explain the occurrence of xylitol-resistant mutans populations in long-term xylitol consumers and suggest a mechanism consistent with a selection process. Since various preliminary results suggest that xylitol-resistant natural mutants may be less virulent and less cariogenic than their parent strains, this selection process may alter, for the better, the mutans streptococci population of the plaque and play a role in the caries-preventive action of xylitol.

Download full-text PDF

Source
http://dx.doi.org/10.1177/00220345960750111201DOI Listing

Publication Analysis

Top Keywords

mutans streptococci
16
xylitol-resistant
12
presence xylitol
12
xylitol-resistant mutants
12
fructose sucrose
12
presence sugars
12
xylitol
11
presence
8
action xylitol
8
constitutive fructose
8

Similar Publications

Objective: To evaluate the influence of edentulism, smoking, microbiota, and oral rehabilitation on the cytokine profile in healthy and hypertensive edentulous individuals using complete dentures.

Design: This case-control study was divided into four groups: normotensives (control group - NH), controlled hypertensives (case group 1 - CH), unreported hypertensives (case group 2 - UnrH), and uncontrolled hypertensives (case group 3 - UncH). The participants were characterized by sociodemographic data, clinical and behavioral information, and systolic and diastolic blood pressure.

View Article and Find Full Text PDF

Streptococci Biotypes in Primary and Permanent Caries: A Case-Control Study.

Int J Clin Pediatr Dent

September 2024

Department of Microbiology, Dr Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India.

Background And Aim: Streptococci, mainly mutans streptococci, are known as the causative microbes of dental caries, but there is limited clarity about their impact on the tooth level and the distribution of streptococci species in different dentition stages. This study evaluates the distribution of streptococci species in primary and permanent teeth in children and adolescents with caries.

Materials And Methods: The study population consisted of two groups: subjects with caries in primary teeth aged 2-5 years and adolescents with caries in permanent teeth aged 12-15 years.

View Article and Find Full Text PDF

Potentiation of antimicrobial photodynamic therapy with potassium iodide and methylene blue: targeting oral biofilm viability.

Photochem Photobiol Sci

December 2024

Department of Health Sciences and Pediatric Dentistry, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (UNICAMP), P.O. BOX 52, Av. Limeira, 901, Piracicaba, SP, 13414-903, Brazil.

The study aimed to assess the impact of combining potassium iodide (KI) with methylene blue (MB) in antimicrobial photodynamic therapy (aPDT) within an oral biofilm formed in situ. A single-phase, 14 days in situ study involved 21 volunteers, who wore a palatal appliance with 8 bovine dentin slabs. These slabs were exposed to a 20% sucrose solution 8 times a day, simulating a high cariogenic challenge.

View Article and Find Full Text PDF
Article Synopsis
  • A single-nucleotide polymorphism in the ManN gene led to unusual traits in glucose phosphotransferase system (PTS) mutants, including increased organic acid excretion and heightened PTS activity, affecting bacterial fitness and carbon catabolite repression.* -
  • Genetic deletions of different PTS components resulted in growth defects on glucose due to excessive hydrogen peroxide (HO) excretion, but these defects were mitigated with catalase supplementation, ultimately enhancing bacterial yield.* -
  • The study suggests that the glucose-PTS plays a crucial role in regulating central carbon metabolism in streptococci, influencing acid production, pH balance, and the bacterial antagonism against harmful oral species, pointing to its potential as a therapeutic target for dys
View Article and Find Full Text PDF

Terahertz Imaging Detects Oral Cariogenic Microbial Domains Characteristics.

J Dent Res

December 2024

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.

Dental caries, associated with plaque biofilm, is highly prevalent and significantly burdens public health. is the main cariogenic bacteria that adheres to the tooth surface and forms an abundant extracellular polysaccharide matrix (EPS) as a cariogenic biofilm scaffold. RNase III-encoding gene () and a putative chromosome segregation protein-encoding gene () are potentially associated with EPS production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!