A novel approach for the ultrastructural localization of surface sialic acids is presented. Membrane-bound sialyl residues are chemically modified in situ by the covalent attachment of biotinyl residues, the latter of which are subsequently localized by ferritin-conjugated avidin. In contrast to previous methods, which have been based on electrostatic interactions, the above method does not affect cell surface charge. Consequently, the macromolecular configuration of the labeled sialoglycoconjugates is preserved. The method has been found to be more accurate in the quantitative evaluation and the topographical localization of membrane-based sialic acids both in normal and pathologically induced surface modulations. Modulations in cell surface sialic acid content and/or distribution have been demonstrated in beta-thalassemia and transformed lymphoid cells, and the consequences of such alterations are discussed regarding destruction vs. escape from the immune surveillance system.
Download full-text PDF |
Source |
---|
ACS Sens
January 2025
Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MDMaastricht, The Netherlands.
Malaria is a major public healthcare concern worldwide, representing a leading cause of death in specific regions. The gold standard for diagnosis is microscopic analysis, but this requires a laboratory setting, trained staff, and infrastructure and is therefore typically slow and dependent on the experience of the technician. This study introduces, for the first time, a biomimetic sensing platform for the direct detection of the disease.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China.
Due to the low bioavailability and insolubility of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) in aqueous solutions, their degradation efficiency is significantly limited in wastewater treatment and environmental remediation. To address this challenge, we designed oil-in-water (O/W) macroemulsion (ME) bioreactors with mixed surfactants (Tween-80 and Triton X-100), -butanol, corn oil, and () to enhance the degradation efficiency of pyrene. Owing to the higher solubility of pyrene in MEs, it could be easily adsorbed onto hydrophobic groups on the cell surface.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
Porous silicon (pSi) has gained substantial attention as a versatile material for various biomedical applications due to its unique structural and functional properties. Initially used as a semiconductor material, pSi has transitioned into a bioactive platform, enabling its use in drug delivery systems, biosensing, tissue engineering scaffolds, and implantable devices. This review explores recent advancements in macrostructural pSi, emphasizing its biocompatibility, biodegradability, high surface area, and tunable properties.
View Article and Find Full Text PDFJ Hand Surg Am
January 2025
Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO. Electronic address:
Purpose: Isolated coronal shear fractures of the distal humerus in adolescents are rare injuries with unique surgical challenges. Respect for the posterior blood supply, open physes, and need for direct visualization to achieve anatomic reduction are critical considerations in surgical fixation. This study presents a case series and a surgical approach used in treating these patients.
View Article and Find Full Text PDFBiophys J
January 2025
Department of Physics and Astronomy, Department of Chemistry, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California, USA. Electronic address:
In this work we present a minimal structure-based model of protein diffusional search along local DNA amid protein binding and unbinding events on the DNA, taking into account protein-DNA electrostatic interactions and hydrogen-bonding (HB) interactions or contacts at the interface. We accordingly constructed the protein diffusion-association/dissociation free energy surface and mapped it to 1D as the protein slides along DNA, maintaining the protein-DNA interfacial HB contacts that presumably dictate the DNA sequence information detection. Upon DNA helical path correction, the protein 1D diffusion rates along local DNA can be physically derived to be consistent with experimental measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!