In vivo analysis of DNA-protein interactions on the human erythropoietin enhancer.

Mol Cell Biol

Center for Excellence in Cancer Research, Treatment and Education, Louisiana State University Medical Center, Shreveport 71130, USA.

Published: February 1997

The erythropoietin (EPO) gene is one of the best examples of a mammalian gene controlled by oxygen tension. The DNA elements responsible for hypoxia-induced transcription consist of a short region of the proximal promoter and a <50-bp 3' enhancer. The elements act cooperatively to increase the transcriptional initiation rate approximately 100-fold in response to low oxygen tension in Hep3B cells. Two distinct types of transactivating proteins have been demonstrated to bind the response elements in the human EPO enhancer in vitro: one shows hypoxia-inducible DNA binding activity, while the other activity binds DNA under normoxic and hypoxic conditions. We have investigated the DNA-protein interactions on the human EPO enhancer in living tissue culture cells that produce EPO in a regulated fashion (Hep3B) and in cells that do not express EPO under any conditions tested (HeLa). We have identified in vivo DNA-protein interactions on the control elements in the human EPO enhancer by ligation-mediated PCR technology. We show that the putative protein binding sites in the EPO enhancer are occupied in vivo under conditions of normoxia, hypoxia, and cobalt exposure in EPO-producing cells. These sites are not occupied in cells that do not produce EPO. We also provide evidence for a conformational change in the topography of the EPO enhancer in response to hypoxia and cobalt exposure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC231811PMC
http://dx.doi.org/10.1128/MCB.17.2.851DOI Listing

Publication Analysis

Top Keywords

vivo analysis
4
analysis dna-protein
4
dna-protein interactions
4
interactions human
4
human erythropoietin
4
erythropoietin enhancer
4
enhancer erythropoietin
4
erythropoietin epo
4
epo gene
4
gene best
4

Similar Publications

IL-35 modulates Tfh2 and Tfr cell balance to alleviate allergic rhinitis.

Inflamm Res

January 2025

Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.

Background: Allergic rhinitis (AR) represents a persistent inflammatory condition affecting the upper respiratory tract, characterized by abnormal initiation of the immunoglobulin E (IgE)-mediated cascade. Follicular helper T (Tfh) cells and regulatory T (Tfr) cells are pivotal in orchestrating the development of IgE production in AR patients. IL-35, an anti-inflammatory cytokine, secreted by various cellular subpopulations.

View Article and Find Full Text PDF

Proton magnetic resonance spectroscopy (MRS) offers a non-invasive, repeatable, and reproducible method for in vivo metabolite profiling of the brain and other tissues. However, metabolite fingerprinting by MRS requires high signal-to-noise ratios for accurate metabolite quantification, which has traditionally been limited to large volumes of interest, compromising spatial fidelity. In this study, we introduce a new optimized pipeline that combines LASER MRS acquisition at 11.

View Article and Find Full Text PDF

Background: Resistance to temozolomide (TMZ) remains is an important cause of treatment failure in patients with glioblastoma multiforme (GBM). ADAR1, as a member of the ADAR family, plays an important role in cancer progression and chemotherapy resistance. However, the mechanism by which ADAR1 regulates GBM progression and TMZ resistance is still unclear.

View Article and Find Full Text PDF

Background: Equine odontoclastic tooth resorption and hypercementosis (EOTRH) is a painful disorder primarily affecting the incisor teeth of horses over 15 years of age. Clinical signs of the disease include prehension problems, halitosis and in severe cases weight loss. The disease predominately affects the reserve crown and presents as a loss of dental tissue and excessive build-up of cementum.

View Article and Find Full Text PDF

The sulfur-related metabolic status of during infection reveals cytosolic serine hydroxymethyltransferase as a promising antifungal target.

Virulence

December 2025

Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.

Sulfur metabolism is an essential aspect of fungal physiology and pathogenicity. Fungal sulfur metabolism comprises anabolic and catabolic routes that are not well conserved in mammals, therefore is considered a promising source of prospective novel antifungal targets. To gain insight into sulfur-related metabolism during infection, we used a NanoString custom nCounter-TagSet and compared the expression of 68 key metabolic genes in different murine models of invasive pulmonary aspergillosis, at 3 time-points, and under a variety of conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!