Progression of prostate cancer during endocrine therapy is a major clinical problem, the molecular mechanisms of which remain poorly understood. Amplification of the androgen receptor (AR) gene was recently described in recurrent prostate carcinomas from patients who had failed androgen deprivation therapy. To evaluate the hypothesis that amplification of the AR gene is a cause for the failure of androgen deprivation therapy in prostate cancer, we studied whether AR amplification leads to gene overexpression, whether the amplified AR gene is structurally intact, and whether tumors with AR amplification have distinct biological and clinical characteristics. Tumor specimens were collected from 54 prostate cancer patients at the time of a local recurrence following therapy failure. In 26 cases, paired primary tumor specimens from the same patients prior to therapy were also available. Fifteen (28%) of the recurrent therapy-resistant tumors, but none of the untreated primary tumors, contained AR gene amplification as determined by fluorescence in situ hybridization. According to single-stranded conformation polymorphism analysis, the AR gene was wild type in all but one of the 13 AR amplified cases studied. In one tumor, a presumed mutation in the hormone-binding domain at codon 674 leading to a Gly --> Ala substitution was found, but functional studies indicated that this mutation did not change the transactivational properties of the receptor. AR amplification was associated with a substantially increased level of mRNA expression of the gene by in situ hybridization. Clinicopathological correlations indicated that AR amplification was most likely to occur in tumors that had initially responded well to endocrine therapy and whose response duration was more than 12 months. Tumors that recurred earlier or those that showed no initial therapy response did not contain AR amplification. The median survival time after recurrence was two times longer for patients with AR amplification in comparison to those with no amplification (P = 0.03, Willcoxon-Breslow test). In conclusion, failure of conventional androgen deprivation therapy in prostate cancer may be caused by a clonal expansion of tumor cells that are able to continue androgen-dependent growth despite of the low concentrations of serum androgens. Amplification and the increased expression of a wild-type AR gene may play a key role in this process.

Download full-text PDF

Source

Publication Analysis

Top Keywords

prostate cancer
20
androgen deprivation
16
deprivation therapy
16
amplification
12
gene
9
therapy
9
androgen receptor
8
receptor gene
8
gene amplification
8
therapy failure
8

Similar Publications

Background: Prostate cancer treatment involves hormonal therapies that may carry cardiovascular risks, particularly for long-term use. Gonadotropin-releasing hormone (GnRH) antagonists, such as degarelix, may offer advantages over agonists, but comprehensive comparative cardiovascular outcomes are not well established. This study aimed to systematically review and analyze the cardiovascular safety profiles of degarelix compared to those of traditional GnRH agonists, providing critical insights for optimizing treatment strategies.

View Article and Find Full Text PDF

Objectives: To evaluate the impact of Aquablation on circulating tumor cells (CTCs) in men with localized prostate cancer.

Methods: This prospective study included subjects with biopsy-positive mpMRI visible lesions (PIRADS ≥ 3) who underwent Aquablation. Ten ml blood samples were collected before, during and after the procedure to measure CTC counts using an immunofluorescence assay.

View Article and Find Full Text PDF

Chronic NaAsO exposure promotes migration and invasion of prostate cancer cells by Akt/GSK-3β/β-catenin/TCF4 axis-mediated epithelial-mesenchymal transition.

Ecotoxicol Environ Saf

January 2025

Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Department of Urology, Chaohu Hospital of Anhui Medical University, Chaohu 238000, China. Electronic address:

Inorganic arsenic is a Class I human Carcinogen. However, the role of chronic inorganic arsenic exposure on prostate cancer metastasis still unclear. This study aimed to investigate the effects and mechanism of chronic NaAsO exposure on migration and invasion of prostate cancer cells.

View Article and Find Full Text PDF

Cancer statistics, 2025.

CA Cancer J Clin

January 2025

Surveillance and Health Equity Science, American Cancer Society, Atlanta, Georgia, USA.

Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence and outcomes using incidence data collected by central cancer registries (through 2021) and mortality data collected by the National Center for Health Statistics (through 2022). In 2025, 2,041,910 new cancer cases and 618,120 cancer deaths are projected to occur in the United States. The cancer mortality rate continued to decline through 2022, averting nearly 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!