Expression of fibronectin mRNA splice variants by rabbit lung in vivo and by alveolar type II cells in vitro.

Am J Physiol

Department of Pediatrics, Strong Children's Research Center, University of Rochester, New York 14642, USA.

Published: December 1996

Fibronectin (FN) is a multidomain glycoprotein with putative functions in tissue development and repair. In repair of alveolar injury, FN may promote the transition of type II epithelial cells to type I epithelial cells. Alternative splicing of FN mRNA, including the EIIIA and EIIIB exons, results in protein isoforms that have cell, tissue, and developmental specificity. The present work found that FN mRNA with the EIIIA exon was in fetal, adult, and oxidant-injured lung. The EIIIB splice variant, however, was restricted to fetal lung and adult lung recovering from oxidant injury. Because alveolar type II cells in vitro express FN, we examined the splice variants in two conditions that induce FN [transforming growth factor-beta 1 (TGF-beta 1) treatment and time in culture]. TGF-beta 1 increased both EIIIA and EIIIB mRNA abundance by 10-fold. Increased EIIIA isoform immunostaining was also noted. Type II cells that spontaneously express FN at 72 h in vitro had increased EIIIA and EIIIB mRNA and increased immunostaining for EIIIA. Nuclear runoff showed induction of FN gene transcription at 72 h in vitro. Together, these data show differential FN splice variant expression in lung, with EIIIB mRNA restricted to fetal and recovering oxidant-injured lung. Furthermore, the transition of type II cells to a type I-like cell is accompanied by increased FN gene transcription and induction of both EIIIA and EIIIB mRNA.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.1996.271.6.L972DOI Listing

Publication Analysis

Top Keywords

type cells
16
eiiia eiiib
16
eiiib mrna
16
increased eiiia
12
splice variants
8
alveolar type
8
cells vitro
8
transition type
8
type epithelial
8
epithelial cells
8

Similar Publications

IL-7 secreted by keratinocytes induces melanogenesis via c-kit/MAPK signaling pathway in Melan-a melanocytes.

Arch Dermatol Res

January 2025

Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.

Abnormal melanin synthesis within melanocytes can result in pigmentary skin disorders. Although pigmentation alterations associated with inflammation are frequently observed, the precise reason for this clinical observation is still unknown. More specifically, although many cytokines are known to be critical for inflammatory skin processes, it is unclear how they affect epidermal melanocyte function.

View Article and Find Full Text PDF

IL-35 modulates Tfh2 and Tfr cell balance to alleviate allergic rhinitis.

Inflamm Res

January 2025

Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.

Background: Allergic rhinitis (AR) represents a persistent inflammatory condition affecting the upper respiratory tract, characterized by abnormal initiation of the immunoglobulin E (IgE)-mediated cascade. Follicular helper T (Tfh) cells and regulatory T (Tfr) cells are pivotal in orchestrating the development of IgE production in AR patients. IL-35, an anti-inflammatory cytokine, secreted by various cellular subpopulations.

View Article and Find Full Text PDF

This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.

View Article and Find Full Text PDF

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

Menstrual effluent cell profiles have potential as noninvasive biomarkers of female reproductive and gynecological health and disease. We used DNA methylation-based cell type deconvolution (methylation cytometry) to identify cell type profiles in self-collected menstrual effluent. During the second day of their menstrual cycle, healthy participants collected menstrual effluent using a vaginal swab, menstrual cup, and pad.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!