Little is known about the biochemical "machinery" responsible for the morphological features of apoptosis, although the cytoskeleton is presumed to be involved. Using flow cytometry, polyacrylamide gel electrophoresis, and fluorescence microscopy, we show that apoptosis induced by ultraviolet (UV) irradiation or 80 micrograms/ml etoposide correlates with early transient polymerization and later depolymerization of filamentous (F)-actin and dramatic changes in visible microfilament organization. Depolymerization of F-actin began before the formation of apoptotic bodies and was ultimately composed of decreases in both the detergent-insoluble (40%) and detergent-soluble (50%) pools of F-actin. Dihydrocytochalasin B (H2CB), which blocked apoptotic body formation, depolymerized F-actin in the detergent-insoluble pool only. Visually, H2CB treatment disrupted microfilament organization, resulting in short, brightly stained microfilaments dispersed throughout the cytoplasm. In contrast, apoptotic cells contained a network of fine microfilaments with bright staining concentrated at the site of apoptotic body formation. Together, these results suggest that reorganization of the microfilament network is necessary for the formation of apoptotic bodies and that depolymerization of F-actin may also be a necessary component of the process of apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.1996.271.6.C1981 | DOI Listing |
J Physiol Sci
January 2025
Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-Ku, 116-8551, Tokyo, Japan. Electronic address:
Actin linked regulatory mechanisms are known to contribute contraction/relaxation in smooth muscle. In order to clarify whether modulation of polymerization/depolymerization of actin filaments affects relaxation process, we examined the effects of cytochalasin D on relaxation process by Ca removal after Ca-induced contraction of β-escin skinned (cell membrane permeabilized) taenia cecum and carotid artery preparations from guinea pigs. Cytochalasin D, an inhibitor of actin polymerization, significantly suppressed the force during relaxation both in skinned taenia cecum and carotid artery.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Georgia Institute of Technology, School Of Chemistry and Biochemistry, 901 Atlantic Drive, 30332, United States, 30332, Atlanta, UNITED STATES OF AMERICA.
The development of chemically recyclable polymers for sustainable 3D printing is crucial to reducing plastic waste and advancing towards a circular polymer economy. Here, we introduce a new class of polythioenones (PCTE) synthesized via Michael addition-elimination ring-opening polymerization (MAEROP) of cyclic thioenone (CTE) monomers. The designed monomers are straightforward to synthesize, scalable and highly modular, and the resulting polymers display mechanical performance superior to commodity polyolefins such as polyethylene and polypropylene.
View Article and Find Full Text PDFMacromolecules
January 2025
Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
A series of novel chain-extended polyurethanes (CEPUs) featuring degradable sulfonyl ethyl urethane chain-extenders that permit degradation under base-triggered conditions to afford "debond-on-demand" elastomeric adhesives are reported. Exposure of the CEPUs to -butylammonium fluoride (TBAF) triggered the degradation of the sulfonyl ethyl urethane chain-extenders. Lap shear adhesion tests of the CEPUs exposed to TBAF revealed reductions in shear strength of up to 65% for both aluminum and glass substrates, from 2.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Indian Institute of Technology Kharagpur-721302, WB, India.
At present, plastic pollution is a global environmental catastrophe and a major threat to mankind. Moreover, the increasing manufacture of various plastic products is causing rapid depletion of precious resources. Thus, transforming plastic waste into feedstock, which can maintain a circular economy, has emerged as a significant technique for waste management and carbon resource conservation.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States.
Purpose: To study the roles of tubulin acetylation and cyclic mechanical stretch (CMS) in trabecular meshwork (TM) cells and their impact on outflow pathway physiology and pathology.
Methods: Primary TM cell cultures were subjected to CMS (8% elongation, 24 hours), and acetylated α-tubulin at lysine 40 (Ac-TUBA4) was assessed by western blotting and immunofluorescence. Enzymes regulating tubulin acetylation were identified via siRNA-mediated knockdowns of ATAT1, HDAC6, and SIRT2.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!