Halophilic vibrios (V. parahaemolyticus and V. alginolyticus) were for the first time isolated from the Azov sea in the Eisk district. These vibrios proved to be typical representatives of Vibrio genus and were distinctly differentiated by species according to the following signs: saccharose splitting, growth in peptone water with 10% NaCl solution, and acetylmethylcarbinol production. Swarming capacity on 1.5% agar with 3% NaCl proved to be a more variable sign. All the cultures isolated were typed by means of Japanese O- and K-sera and had the following antigenic formulae: O1:K32; O2:K28; O3:K57; O5:K17; O6:K18. Only in 3 cases it was impossible to determine completely the antigenic formula of vibrios referred by the O-antigen type +o the 7th and 11th groups. Thus, parahemolytic vibrios isolated from the Azov sea were referred to the serological types revealed in Japan in the sea water, hydrobionts and feces of patients with acute gastrointestinal diseases.

Download full-text PDF

Source

Publication Analysis

Top Keywords

vibrios isolated
8
isolated azov
8
azov sea
8
[halophilic vibrios
4
isolated
4
sea
4
isolated sea
4
sea azov]
4
azov] halophilic
4
vibrios
4

Similar Publications

This research delves into the evolving dynamics of antibiogram trends, the diversity of antibiotic resistance genes and antibiotic efficacy against Vibrio cholerae strains that triggered the cholera outbreak 2022 in Odisha, India. The study will provide valuable insights managing antimicrobial resistance during cholera outbreaks. Eighty V.

View Article and Find Full Text PDF

Magnetic relaxation switch biosensor for detection of Vibrio parahaemolyticus based on photocleavable hydrogel.

Anal Chim Acta

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China. Electronic address:

Background: Foodborne pathogens, particularly Vibrio parahaemolyticus (VP) found in seafood, pose significant health risks, including abdominal pain, nausea, and even death. Rapid, accurate, and sensitive detection of these pathogens is crucial for food safety and public health. However, existing detection methods often require complex sample pretreatment, which limits their practical application.

View Article and Find Full Text PDF

Evaluation of MALDI-TOF for identification of Vibrio cholerae and Vibrio parahaemolyticus from growth on agar media.

Appl Microbiol Biotechnol

January 2025

Vibrio Reference Laboratory, Bureau of Microbial Hazards, Health Canada, Ottawa, ON, Canada.

Two methods were compared for their ability to accurately identify Vibrio species of interest: whole genome sequencing as the reference method and MALDI-TOF MS (matrix-assisted laser desorption/ionization-time of flight mass spectrometry) proteome fingerprinting. The accuracy of mass spectrometry-based identification method was evaluated for its ability to accurately identify isolates of Vibrio cholerae and Vibrio parahaemolyticus. Identification result of each isolate obtained by mass spectrometry was compared to identification by whole genome sequencing (WGS).

View Article and Find Full Text PDF

Comparative Genome Analysis of Piscine : Virulence-Associated Metabolic Pathways.

Microorganisms

December 2024

Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand.

Vibriosis caused by is a major problem in aquatic animals, particularly brown marble groupers (). biotype I has recently been isolated and classified into subgroups SUKU_G1, SUKU_G2, and SUKU_G3 according to the different types of virulence genes. In a previous study, we have shown that biotype I strains were classified into three subgroups according to the different types of virulence genes, which exhibited different phenotypes in terms of growth rate and virulence.

View Article and Find Full Text PDF

Cholera is linked to penury, making low- and middle-income countries (LMICs) particularly vulnerable to outbreaks. In this systematic review, we analyzed the drivers contributing to these outbreaks, focusing on the epidemiology of cholera in LMICs. This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and was registered in PROSPERO (ID: CRD42024591613).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!