We have investigated the effects of tyrosine phosphorylation on the estradiol-binding mechanism and binding capacity of the human estrogen receptor (hER). The wild type hER and a point mutant form of the hER, in which tyrosine 537 was mutated to phenylalanine (Y537F hER), were expressed in Sf9 insect cells. The wild type hER, but not the Y537F hER, reacted with a anti-phosphotyrosine monoclonal antibody, indicating that tyrosine 537 was the only tyrosine phosphorylated on the hER. Scatchard and Hill analyses of the the binding interaction of [3H]estradiol with the wild type hER indicated that the addition of millimolar phosphotyrosine, but not tyrosine, phosphate, or phosphoserine, abolished the cooperative binding mechanism of the hER. These observations are consistent with the idea that phosphotyrosine blocks dimerization and site-site interactions between the hER monomers. The wild type hER bound 10-fold more [3H]estradiol than the Y537F hER. Treatment of the purified wild type hER with a tyrosine phosphatase decreased the binding capacity of the hER by approximately 90%, whereas, a serine/threonine phosphatase had no effect. The estrogen-binding capacity of the tyrosine-dephosphorylated hER was completely restored by rephosphorylation of tyrosine 537 with p60c-src, a tyrosine kinase. These results indicate that p60c-src can restore estrogen binding to the tyrosine-dephosphorylated hER and that dimerization and cooperative site-site interaction of the hER occur via a phosphotyrosine-binding interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/mend.11.1.9876 | DOI Listing |
Chem Commun (Camb)
January 2025
Beijing Life Science Academy, Beijing 102206, China.
Detection of low-abundance mutations for the early discovery of fungicide-resistant fungal pathogens is highly demanded, but remains challenging. Herein, we developed a dual-recognition strategy, termed PARPA, involving s Argonaute (pfAgo)-mediated elimination of wild-type fungal genes and CRISPR/Cas12a-based amplicon recognition. This assay can detect fungicide-resistant at relative abundances as low as 0.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
April 2024
CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
In response to the changing intertidal environment, intertidal macroalgae have evolved complicated Ci utilization mechanisms. However, our knowledge regarding the CO concentrating mechanism (CCM) of macroalgae is limited. Carbonic anhydrase (CA), a key component of CCM, plays essential roles in many physiological reactions in various organisms.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark.
One strategy for CO mitigation is using photosynthetic microorganisms to sequester CO under high concentrations, such as in flue gases. While elevated CO levels generally promote growth, excessively high levels inhibit growth through uncertain mechanisms. This study investigated the physiology of the cyanobacterium Synechocystis sp.
View Article and Find Full Text PDFJ Virol
January 2025
Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.
Unlabelled: Coronaviruses have large, positive-sense single-stranded RNA genomes that challenge conventional strategies for mutagenesis. Yeast genetics has been used to manipulate large viral genomes, including those of herpesviruses and coronaviruses. This method, known as transformation-associated recombination (TAR), involves assembling complete viral genomes from dsDNA copies of viral genome fragments via homologous recombination in .
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018 Shandong, China.
Jasmonic acid (JA) is crucial for plant stress responses, which rely on intercellular jasmonate transport. However, JA transporters have not been fully identified, especially in tomato ( L.).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!