Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Photochemical crosslinking is now a powerful method for studying protein-nucleic acid interactions. UV light is a zero-length crosslinking agent that predominantly or exclusively crosslinks proteins to nucleic acids at their contact points. It can therefore provide strong evidence for close protein-nucleic acid interactions. However, to achieve an acceptable degree of crosslinking with conventional UV light sources, exposure times ranging from minutes to several hours are necessary. Such prolonged irradiation allows for the artifactual redistribution of proteins and precludes kinetic studies. The use of UV lasers overcomes these difficulties since the number of photons required for the crosslinking may be delivered in time intervals on the order of nano- or even picoseconds. We described detailed procedures for UV laser-induced protein-DNA crosslinking both in vivo and in vitro. Technical aspects, including the choice of UV laser for irradiation, the isolation of covalently crosslinked protein-DNA complexes, immunochemical techniques for both the identification and isolation of specific protein-DNA complexes and the identification of the crosslinked DNA sequences, are reviewed in detail. The application of UV laser crosslinking in kinetic studies is illustrated by the example of the TATA-binding protein (TBP) interaction with the adenovirus E4 promoter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/meth.1996.0409 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!