Loss of the N-myc oncogene in a patient with a small interstitial deletion of the short arm of chromosome 2.

Am J Med Genet

Division of Human Genetics, Children's Hospital Research Foundation, Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.

Published: December 1996

To our knowledge, only four previous cases of distal chromosome 2p deletions exist in the literature. We present a patient with minor facial anomalies who had a distal interstitial deletion of the short arm of chromosome 2, del(2)(p24.2p25.1). This patient had many features seen in other patients with distal 2p deletion including short stature, "rectangular" facies, microcephaly, hypotonia, and mental retardation. This patient also has sensorineural hearing loss which has been described in one other patient with a similar deletion. The N-myc oncogene has been mapped to 2p24. By fluorescence in situ hybridization using a cDNA probe for the N-myc oncogene, this patient was found to have a deletion of the N-myc oncogene. This confirms the previous map location for N-myc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(SICI)1096-8628(19961230)66:4<373::AID-AJMG1>3.0.CO;2-MDOI Listing

Publication Analysis

Top Keywords

n-myc oncogene
16
oncogene patient
8
interstitial deletion
8
deletion short
8
short arm
8
arm chromosome
8
patient deletion
8
deletion n-myc
8
patient
6
deletion
5

Similar Publications

Cancers with activating mutations of KRAS show a high prevalence but remain intractable, requiring innovative strategies to overcome the poor targetability of KRAS. Here, we report that KRAS expression is post-translationally up-regulated through deubiquitination when the scaffolding function of NDRG3 (N-Myc downstream-regulated gene 3) promotes specific interaction between KRAS and a deubiquitinating enzyme, USP9X. In KRAS-mutant cancer cells KRAS protein expression, downstream signaling, and cell growth are highly dependent on NDRG3.

View Article and Find Full Text PDF

Retinoblastoma, a rare childhood eye cancer, has hereditary and non-hereditary forms. While TNM classification helps in prognosis, understanding molecular mechanisms is vital for the clinical behavior of retinoblastoma prediction. Our study aimed to analyze the expression levels of key Wnt pathway proteins, GSK3β, LEF1, β-catenin, and DVL1, and associate them to non-phosphorylated active form (pRb) and the phosphorylated inactive form (ppRb) and N-myc expression, in retinoblastoma cells and healthy retinal cells, in order to elucidate their roles in retinoblastoma and identify potential targets that could help to improve diagnostic and therapy.

View Article and Find Full Text PDF

Background/aim: Treatment with retinoic acid (RA) often promotes neuroblastoma differentiation and growth inhibition, including the suppression of the expression of the MYCN oncogene. However, RA also targets protumoral chemokines, such as CCL2, which may contribute to the development of resistance. The present study aimed to investigate the regulation and function of CCL2 and N-Myc in RA-treated neuroblastoma cells.

View Article and Find Full Text PDF

Neuroblastoma is the most common extra-cranial solid tumour in children. Over half of all high-risk cases are expected to succumb to the disease even after chemotherapy, surgery, and immunotherapy. Although the importance of MYCN amplification in this disease is indisputable, the mechanistic details remain enigmatic.

View Article and Find Full Text PDF

Purpose: Long non-coding RNAs (lncRNAs) play important roles in progression of neuroblastoma (NB). LncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been shown to affect the development of multiple tumors. However, the effect of NEAT1 on NB remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!