In susceptible patients, halothane, enflurane, isoflurane, and desflurane can produce severe hepatic injury by an immune response directed against reactive anesthetic metabolites covalently bound to hepatic proteins. The incidence of hepatotoxicity appears to directly correlate with anesthetic metabolism catalyzed by cytochrome P450 2E1 to trifluoroacetylated hepatic proteins. In the present study, we examined whether the extent of acylation of hepatic proteins in rats by halothane, enflurane, isoflurane, and desflurane correlated with reported relative rates of metabolism. After pretreatment with the P450 2E1 inducer isoniazid, five groups of 10 rats breathed 1.25 minimum alveolar anesthetic concentration (MAC) of halothane, enflurane, isoflurane, or desflurane in oxygen, or oxygen alone, each for 8 h. Immunochemical analysis of livers harvested 18 h after anesthetic exposure showed tissue acylation (greatest to least) after exposure to halothane, enflurane, or isoflurane. Reactivity was not different between isoflurane as compared to desflurane or oxygen alone. An enzyme-linked immunosorbent assay showed halothane reactivity was significantly greater than that of enflurane, isoflurane, desflurane, or oxygen, and that enflurane reactivity was significantly greater than desflurane or oxygen. Sera from patients with a clinical diagnosis of halothane hepatitis showed antibody reactivity against hepatic proteins from rats exposed to halothane or enflurane. No reactivity was detected in rats exposed to isoflurane, desflurane, or oxygen alone. These results indicate that production of acylated proteins may be an important mediator of anesthetic-induced hepatotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00000539-199701000-00031 | DOI Listing |
Molecules
March 2023
National Research Council, Institute for Chemical and Physical Processes (CNR-IPCF), via G. Moruzzi 1, 56124 Pisa, Italy.
Silylated-acetylated cyclodextrin (CD) derivatives have recently been investigated, via nuclear magnetic resonance (NMR) spectroscopy, as chiral sensors for substrates that are endowed and devoid of fluorine atoms, and the importance of Si-F interaction in the discrimination phenomena has been assessed. Here, the contributions of both superficial interactions and inclusion processes were further evaluated by extending the records to other chiral fluorinated substrates of interest for pharmaceutical applications. Non-equivalences were measured for both the H and F resonances in equimolar mixtures with the CDs; the promising results also supported the use of chiral sensors in -stoichiometric amounts.
View Article and Find Full Text PDFPharmacogenomics J
December 2021
Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL, USA.
Variable responses to medications complicates perioperative care. As a potential solution, we evaluated and synthesized pharmacogenomic evidence that may inform anesthesia and pain prescribing to identify clinically actionable drug/gene pairs. Clinical decision-support (CDS) summaries were developed and were evaluated using Appraisal of Guidelines for Research and Evaluation (AGREE) II.
View Article and Find Full Text PDFSince the advent of nitric oxide, diethyl ether, chloroform and cyclopropane, the greatest advancement in the area of general inhalational anesthetics has been achieved by the introduction of fluorinated anesthetics and the relevant chiral techniques. This progress led to marked decrease in mortality rates in anesthesia. In the group of chiral fluorinated compounds, halothane (Fluotan®), isoflurane (Foran®), desflurane (Supran®) and enflurane (Ehran®) are deployed as volatile anesthetics.
View Article and Find Full Text PDFEpilepsy Behav
May 2021
Comprehensive Epilepsy Center, Dept. of Neurology, School of Medicine, Yale University, Yale New Haven Hospital, New Haven, CT, United States; Human Brain Mapping Program, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.
Intraoperative electrocorticography (ECoG) is a useful technique to guide resections in epilepsy surgery and is mostly performed under general anesthesia. In this systematic literature review, we seek to investigate the effect of anesthetic agents on the quality and reliability of ECoG for localization of the epileptic focus. We conducted a systematic search using PubMed and EMBASE until January 2019, aiming to review the effects of anesthesia on ECoG yield.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!