Photoinduced electron transfer from nucleotides to DNA intercalating viologens. A study by laser-flash photolysis and spectroelectrochemistry.

J Photochem Photobiol B

Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Compultense de Madrid, Spain.

Published: October 1996

Fluorescent DNA-binding N,N'-dialkyl 6-(2-pyridinium)phenanthridinium dications (where dialkyl stands for -(CH2)2-or-(CH2)3-, abbreviated dq2pyp and dq3pyp, respectively) associate with GMP (guanosine-5'-monophosphate) in 0.1-mol l-1, pH 3.5-5.5, phosphate buffer solution to yield 1:1 and 1:2 non-emissive complexes, the formation constants of which range from 197-63 and 19-11 l mol-1, respectively. In addition to the strong static quenching, dynamic deactivation of their excited state occurs at diffusion-controlled rate ki = 5.2 x 10(9) l mol-1 s-1). Illumination of the GMP-containing solutions of the dyes with a 355 nm laser pulse produces a transient, with strong absorbance at 510 and 720 nm for dq2pyp, and 420 and 560 nm for dq3pyp. An identical transient is produced in the presence of ascorbic acid instead of the mononucleotide. By comparison to the electrochemically generated absorption spectra of the monoreduced dyes, the photogenerated transients have been assigned unequivocally to their corresponding radical-cations, formed by electron transfer to the anglet excited state. The back redox reaction between the oxidized quencher and dq2pyp+ proceeds at a rate of 1-2 x 10(9) l mol-1 s-1. The same transient has been observed also for the DNA intercalated viologens; this result, together with the little ability of these dyes to sensitize the formation of singlet dioxygen or to produce superoxide anion, demonstrate that their DNA photocleavaging activity is initiated by an efficient light-induced electron transfer from the nucleobases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1011-1344(96)07332-0DOI Listing

Publication Analysis

Top Keywords

electron transfer
12
excited state
8
109 mol-1
8
mol-1 s-1
8
photoinduced electron
4
transfer nucleotides
4
nucleotides dna
4
dna intercalating
4
intercalating viologens
4
viologens study
4

Similar Publications

Electrochemical reduction for chlorinated hydrocarbons contaminated groundwater remediation: Mechanisms, challenges, and perspectives.

Water Res

January 2025

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China. Electronic address:

Electrochemical reduction technology is a promising method for addressing the persistent contamination of groundwater by chlorinated hydrocarbons. Current research shows that electrochemical reductive dechlorination primarily relies on direct electron transfer (DET) and active hydrogen (H) mediated indirect electron transfer processes, thereby achieving efficient dechlorination and detoxification. This paper explores the influence of the molecular charge structure of chlorinated hydrocarbons, including chlorolefin, chloroalkanes, chlorinated aromatic hydrocarbons, and chloro-carboxylic acid, on reductive dechlorination from the perspective of molecular electrostatic potential and local electron affinity.

View Article and Find Full Text PDF

Chalcogen Substitution-Modulated Molecule-Electrode Coupling in Single-Molecule Junctions.

Langmuir

January 2025

Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Zhejiang, Hangzhou 310018, China.

Molecule-electrode interfaces play a pivotal role in defining the electron transport properties of molecular electronic devices. While extensive research has concentrated on optimizing molecule-electrode coupling (MEC) involving electrode materials and molecular anchoring groups, the role of the molecular backbone structure in modulating MEC is equally vital. Additionally, it is known that the incorporation of heteroatoms into the molecular backbone notably influences factors such as energy levels and conductive characteristics.

View Article and Find Full Text PDF

Thrips tabaci is the main thrips species affecting onion and related species. It is a cryptic species complex comprising three phylogenetic groups characterized by different reproductive modes (thelytoky or arrhenotoky) and host plant specialization. Thrips tabaci populations vary widely in genetic diversity, raising questions about the factor(s) that drive this diversity.

View Article and Find Full Text PDF

Degradation of Methylene Blue by Ozone Oxidation Catalyzed by the Magnetic MnFeO@CoS Nanocomposite.

Langmuir

January 2025

CSSC Nanjing Lvzhou Environmental Protection Co., Ltd, Nanjing 210039, China.

In this study, the MnFeO@CoS magnetic nanocomposite was prepared by a two-step hydrothermal method and used to catalyze the ozone oxidation degradation of methylene blue. It was characterized by XRD, EDS, SEM, FT-IR, and XPS. The results showed that the introduction of CoS made MnFeO grow uniformly on CoS nanosheets, which effectively prevented the agglomeration of MnFeO.

View Article and Find Full Text PDF

Regulatory and retrograde signaling networks in the chlorophyll biosynthetic pathway.

J Integr Plant Biol

January 2025

Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.

Plants, algae and photosynthetic bacteria convert light into chemical energy by means of photosynthesis, thus providing food and energy for most organisms on Earth. Photosynthetic pigments, including chlorophylls (Chls) and carotenoids, are essential components that absorb the light energy necessary to drive electron transport in photosynthesis. The biosynthesis of Chl shares several steps in common with the biosynthesis of other tetrapyrroles, including siroheme, heme and phycobilins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!