Recombinant microorganisms are often employed to produce proteins of commercial significance. It is important to render such organisms non-viable before culture fluids are released from the fermenter. Thermal deactivation is a superficially attractive option because of its simplicity. The effects of such a thermal deactivation step at the end of a recombinant fermentation are reported in this study. In particular, the consequences of this treatment for down-stream process operations, namely homogenisation and centrifugation, are analysed and discussed. Homogenisation efficiency was adversely affected by a simple treatment whereby cells are raised to 65 degrees C from stationary phase. Cell debris size was also significantly increased. These changes could be partially explained by an increase in fractional peptidoglycan crosslinkage and a decrease in mean cell length. A simple process modification removed these detrimental effects. Specifically, the addition of 15 g of glucose 15 mins prior to thermal deactivation enhances downstream processing. Disruption efficiency is increased above that for stationary-phase cells and the resultant cell debris size is significantly reduced, theoretically aiding inclusion body purification. This novel process modification demonstrates that thermal deactivation may be employed to prevent the release of viable recombinant organisms while providing a broth with desirable processing characteristics. It also emphasises the need to optimise any bioprocess as an interconnected sequence of units.

Download full-text PDF

Source

Publication Analysis

Top Keywords

thermal deactivation
20
processing characteristics
8
cell debris
8
debris size
8
process modification
8
thermal
5
deactivation properties
4
properties processing
4
characteristics coli
4
coli recombinant
4

Similar Publications

This paper addresses the author's current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization.

View Article and Find Full Text PDF

Photothermal therapy (PTT) using thermal and tumor microenvironment-responsive reagents is promising for cancer treatment. This study demonstrates an effective PTT nanodrug consisting of hollow-structured, thermally sensitive polydopamine nanobowls (HPDA NB), molybdenum sulfide (MoS) nanozyme, and tirapazamine (TPZ; a hypoxia-responsive drug), with a structure of HPDA@TPZ/MoS NBs which is hereafter denoted as HPTZMoS NBs. With the Fenton-like activity, the HPTZMoS NBs in the presence of HO catalyze the formation of hydroxyl radicals, providing chemodynamic therapy (CDT) effect and deactivating glutathione.

View Article and Find Full Text PDF

Kinetically controlled irreversible unfolding of esterase from Clostridium acetobutylicum: Thermal deactivation kinetics and structural studies.

Int J Biol Macromol

January 2025

Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai 600036, India. Electronic address:

This study involves the thermal characterization of Ca-Est, an esterase from Clostridium acetobutylicum which has been previously found to exhibit maximum specific activity at 60 °C. In the present study, Ca-Est showed maximum stability at 30 °C with almost 75 % of its initial activity being retained after incubation for 5 h and the stability decreased with increasing temperature. Analysis of the thermodynamic parameters revealed that the deactivation of Ca-Est is endothermic and enthalpically favored.

View Article and Find Full Text PDF

Genetically Encoded Biosensors for Constrained Biological Functions in Probiotic Nissle.

ACS Synth Biol

January 2025

State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian 361102, China.

The probiotic Nissle (EcN) is an exceptional strain that has attracted significant attention not only for its clinical efficacy in the treatment and prevention of gastrointestinal disorders but also as a burgeoning microbial chassis for living therapeutic applications. However, there is an immediate necessity to develop conditional expression systems that confine the activity of EcN specifically in the gastrointestinal tract, to avoid influencing the environment. Here, we constructed two genetically encoded interchangeable sensors responsive to body temperature at 37 °C, and small molecules such as protocatechuic acid (PCA), a metabolite found in green tea.

View Article and Find Full Text PDF

Mycomaterials are biomaterials made by inoculating a lignocellulosic substrate with a fungus, where the mycelium acts as a binder and enhances material properties. These materials are well suited as sustainable alternatives to conventional insulation materials thanks to their good insulation properties, low density, degradability, and fire resistance. However, they suffer from mold contamination in moist environments and poor perception ("organic" appearance).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!