Ammonia has been shown to cause release of neurotransmitters such as serotonin (5-hydroxytryptamine; 5-HT) from synaptosomal preparations in vitro. In the present study, frontal neocortical extracellular levels of 5-HT and its major metabolite, 5-hydroxyindole-3-acetic acid (5-HIAA), were determined in vivo by the use of microdialysis in portacaval shunted (PCS) rats, an experimental model of chronic hepatic encephalopathy (HE), prior to and after an acute coma-inducing administration of ammonium acetate (NH4Ac; 5.2 mmol/kg, i.p.). PCS rats displayed elevated (P < 0.01) 5-HIAA but unaltered 5-HT extracellular levels compared with controls, supporting the contention of an increased neocortical 5-HT metabolism but unaltered neuronal 5-HT output in chronic HE. However, a transient elevation of extracellular 5-HT levels was observed when PCS-NH4Ac rats were in coma. Increased brain ammonia may thus augment neuronal 5-HT release in chronic HE, which in turn could be a causative for precipitation of more severe stages of HE.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0924-977x(96)00037-5DOI Listing

Publication Analysis

Top Keywords

ammonium acetate
8
chronic hepatic
8
hepatic encephalopathy
8
5-ht
8
5-ht release
8
extracellular levels
8
pcs rats
8
neuronal 5-ht
8
acetate challenge
4
challenge experimental
4

Similar Publications

To evade legal controls, new psychoactive substances (NPS), which have been designed as substitutes for traditional and synthetic drugs, are gradually dominating the drug market. Synthetic cannabinoids (SCs), which account for the majority of NPS, are rapidly being derivatized; consequently, controlling increasing abuse by merely listing individual compounds is difficult. Therefore, China has included the entire SC category of SCs listed as legal controlled substances since July 1, 2021.

View Article and Find Full Text PDF

Thromboxane A (TXA), a prothrombotic factor that induces platelet aggregation and thrombosis, acts as a vasoconstrictor by activating TXA receptors (TP receptors). TXA is extremely unstable and metabolizes into three major metabolites: 2,3-dinor thromboxane B (2,3-dinor-TXB), 11-dehydro TXB(11-dh-TXB), and 11-dehydro-2,3-dinor TXB(11-dh-2,3-dinor-TXB). 8-Iso-prostaglandin F(8-iso-PGF), a prostaglandin-like compound widely considered the best biomarker of oxidative stress, can also activate TP receptors.

View Article and Find Full Text PDF

Targeted and untargeted urinary metabolomics of alkaptonuria patients using ultra high-performance liquid chromatography-tandem mass spectrometry.

J Pharm Biomed Anal

January 2025

Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany. Electronic address:

Alkaptonuria (AKU) is a rare autosomal-recessive disease which is characterized through black urine and ochronosis. It is caused by deficiency of the enzyme Homogentisate 1,2-dioxygenase in the Phenylalanine/Tyrosine degradation pathway which leads to the accumulation of Homogentisic acid (HGA). Urine was provided by AKU patients and healthy controls.

View Article and Find Full Text PDF

A method for analyzing tetrodotoxin (TTX) in miso soup samples was proposed. The samples were purified using strong cation exchange solid-phase extraction and analyzed by liquid chromatography-tandem mass spectrometry. The recovery of TTX was considerably influenced by the salt concentration in the loading solution during purification.

View Article and Find Full Text PDF

Radix Rehmanniae (RR) is a widely used herb in traditional Chinese Medicine with properties of tonifying the kidneys and nourishing the blood. Both raw and processed RR are effective for the treatment of diabetes in clinical practice. Oligosaccharides and iridoid glycosides are the primary active components responsible for the anti-diabetic effects of RR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!