Neurosecretory process was studied in the aspect of lipid exchange in the CNS ganglia in the bivalve mollusk using light optics, electron microscopy, cytological and biochemical methods. Neurosecretory material forming was shown to be followed by changes in volume in neuron, nucleus and nucleolus, increase of nucleolar-plasmic relations, granular endoplasmic reticulum proliferation of mitochondria and complex dictyosomes. Changes in lipid content are inversely proportional to the neurosecreted amount in the neuron. The more active secretory process is, the smaller grows the number of lipid-containing cells, common lipids phospholipids. It is concluded that lipids structurally and energetically maintain the neurosecretory material synthesis.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!