Neurotrophin regulation of cortical dendritic growth requires activity.

Neuron

Howard Hughes Medical Institute, Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA.

Published: December 1996

Neurotrophins have been proposed to mediate several forms of activity-dependent competition in the central nervous system. A key element of such hypotheses is that neurotrophins act preferentially on active neurons; however, little direct evidence supports this postulate. We therefore examined, in ferret cortical brain slices, the interactions between activity and neurotrophins in regulating dendritic growth of layer 4 pyramidal neurons. Inhibition of spontaneous electrical activity, synaptic transmission, or L-type calcium channels each prevented the otherwise dramatic increase in dendritic arborizations elicited by brain-derived neurotrophic factor. In developing cortex, this requirement for conjoint neurotrophin signaling and activity provides a mechanism for selectively enhancing the growth and connectivity of active neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0896-6273(00)80239-1DOI Listing

Publication Analysis

Top Keywords

dendritic growth
8
activity neurotrophins
8
active neurons
8
neurotrophin regulation
4
regulation cortical
4
cortical dendritic
4
growth requires
4
activity
4
requires activity
4
neurotrophins proposed
4

Similar Publications

Background: Siglec-E is an immune checkpoint inhibitory molecule. Expression of Siglec-E on the immune cells has been shown to promote tumor regression. This study aimed to develop an adenovirus (Ad) vaccine targeting Siglec-E and carbonic anhydrase IX (CAIX) (Ad-Siglec-E/CAIX) and to evaluate its potential antitumor effects in several preclinical renal cancer models.

View Article and Find Full Text PDF

A unique pool of immature glutamatergic neurons in the primate amygdala, known as the paralaminar nucleus (PL), are maturing between infancy and adolescence. The PL is a potential substrate for the steep growth curve of amygdala volume during this developmental period. A microglial component is also embedded among the PL neurons, and likely supports local neuronal maturation and emerging synaptogenesis.

View Article and Find Full Text PDF

Tumor-draining lymph node dendritic cells (DCs) are poor stimulators of tumor antigen-specific CD4 T cells; however, the mechanism behind this defect is unclear. We now show that, in tumor-draining lymph node DCs, a large proportion of major histocompatibility complex class II (MHC-II) molecules retains the class II-associated invariant chain peptide (CLIP) fragment of the invariant chain bound to the MHC-II peptide binding groove due to reduced expression of the peptide editor H2-M and enhanced activity of the CLIP-generating proteinase cathepsin S. The net effect of this is that MHC-II molecules are unable to efficiently bind antigenic peptides.

View Article and Find Full Text PDF

This work aims to deal with the challenges associated with designing complementary bifunctional electrocatalysts and a separator/membrane that enables rechargeable zinc-air batteries (RZABs) with nearly solid-state operability. This solid-state RZAB was accomplished by integrating a bifunctional electrocatalyst based on Ru-RuO interface nanoparticles supported on nitrogen-doped (N-doped) graphene (Ru-RuO/NGr) and a dual-doped poly(acrylic acid) hydrogel (d-PAA) electrolyte soaked in KOH with sodium stannate additive. The catalyst shows enhanced activity and stability toward the two oxygen reactions, i.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China.

Background: Synaptic plasticity impairment plays a critical role in the pathogenesis of Alzheimer's disease (AD), Smad4, a central intracellular signal transmission mediator of transmission of transforming growth factor-β (TGF-β) signaling, plays a pivotal role in many biological processes, including cell differentiation, migration, apoptosis and tumorigenesis. Emerging evidence has demonstrated that Smad4 is also involved in the pathogenesis of AD. Once TGF-β signaling is stimulated, Smad4 interaction with Sp1 and Smad3 induces the transcriptional activation of APP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!