Role of transmembrane pH gradient and membrane binding in nisin pore formation.

J Bacteriol

Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands.

Published: January 1997

Nisin is a cationic antimicrobial peptide that belongs to the group of lantibiotics. It is thought to form oligomeric pores in the target membrane by a mechanism that requires the transmembrane electrical potential delta psi and that involves local pertubation of the lipid bilayer structure. Here we show that nisin does not form exclusively voltage-dependent pores: even in the absence of a delta psi, nisin is able to dissipate the transmembrane pH gradient (delta pH) in sensitive Lactococcus lactis cells and proteoliposomes. The rate of dissipation increases with the magnitude of the delta pH. Nisin forms pores only when the delta pH is inside alkaline. The efficiency of delta psi-induced pore formation is strongly affected by the external pH, whereas delta pH-induced pore formation is rather insensitive to the external pH. Nisin(1-12), an amino-terminal fragment of nisin, and (des-deltaAla5)-(nisin(1-32) amide have a strongly reduced capacity to dissipate the delta psi and delta pH in cytochrome c oxidase proteoliposomes and L. lactis cells. Both variants bind with reduced efficiency to liposomes containing negatively charged phospholipids, suggesting that both ring A and rings C to E play a role in membrane binding. Nisin(1-12) competes with nisin for membrane binding and antagonizes pore formation. These findings are consistent with the wedge model of nisin-induced pore formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC178671PMC
http://dx.doi.org/10.1128/jb.179.1.135-140.1997DOI Listing

Publication Analysis

Top Keywords

pore formation
20
membrane binding
12
delta psi
12
delta
9
transmembrane gradient
8
lactis cells
8
nisin
7
pore
5
formation
5
role transmembrane
4

Similar Publications

An Injectable Alginate Hydrogel Modified by Collagen and Fibronectin for Better Cellular Environment.

ACS Appl Bio Mater

January 2025

Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, Yale University, 310 Cedar Street, New Haven, Connecticut 06510, United States.

Encapsulating fibroblasts in alginate hydrogels is a promising strategy to promote wound healing. However, improving the cell function within the alginate matrix remains a challenge. In this study, we engineer an injectable hydrogel through mixing alginate function with collagen and fibronectin, creating a better microenvironment for enhancing fibroblast function and cytokine secretion.

View Article and Find Full Text PDF

The stomatal phenotype is a crucial microscopic characteristic of the leaf surface, and modulating the stomata of maize leaves can enhance photosynthetic carbon assimilation and water use efficiency, thereby playing a vital role in maize yield formation. The evolving imaging and image processing technologies offer effective tools for precise analysis of stomatal phenotypes. This study employed Jingnongke 728 and its parental inbred to capture stomatal images from various leaf positions and abaxial surfaces during key reproductive stages using rapid scanning electron microscopy.

View Article and Find Full Text PDF

This paper reports on several mechanisms of carbon aging in a hybrid lithium-ion capacitor operating with 1 mol L LiPF in an ethylene carbonate/dimethyl carbonate 1:1 vol/vol electrolyte. Carbon electrodes were subjected to a constant polarization protocol (i.e.

View Article and Find Full Text PDF

The self-assembled ferritin protein nanocage plays a pivotal role during oxidative stress, iron metabolism, and host-pathogen interaction by executing rapid iron uptake, oxidation and its safe-storage. Self-assembly creates a nanocompartment and various pores/channels for the uptake of charged substrates (Fe) and develops a concentration gradient across the protein shell. This phenomenon fuels rapid ferroxidase activity by an upsurge in the substrate concentration at the catalytic sites.

View Article and Find Full Text PDF

Objective: Fracture risk is increased in longstanding type 2 diabetes (T2D). High-resolution peripheral quantitative CT scans have demonstrated higher cortical porosity in T2D complicated by microvascular disease (MVD). We investigated if cortical bone resorption is followed by inadequate bone formation in individuals with T2D complicated by MVD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!