Dynamics of the martial arts high front kick.

J Sports Sci

Department of Medical Anatomy, Panum Institute, University of Copenhagen, Denmark.

Published: December 1996

Fast unloaded movements (i.e. striking, throwing and kicking) are typically performed in a proximo-distal sequence, where initially high proximal segments accelerate while distal segments lag behind, after which proximal segments decelerate while distal segments accelerate. The aims of this study were to examine whether proximal segment deceleration is performed actively by antagonist muscles or is a passive consequence of distal segment movement, and whether distal segment acceleration is enhanced by proximal segment deceleration. Seventeen skilled taekwon-do practitioners were filmed using a high-speed camera while performing a high front kick. During kicking, EMG recordings were obtained from five major lower extremity muscles. Based on the kinematic data, inverse dynamics computations were performed yielding muscle moments and motion-dependent moments. The results indicated that thigh deceleration was caused by motion-dependent moments arising from lower leg motion and not by active deceleration. This was supported by the EMG recordings. Lower leg acceleration was caused partly by a knee extensor muscle moment and partly by a motion-dependent moment arising from thigh angular velocity. Thus, lower leg acceleration was not enhanced by thigh deceleration. On the contrary, thigh deceleration, although not desirable, is unavoidable because of lower leg acceleration.

Download full-text PDF

Source
http://dx.doi.org/10.1080/02640419608727735DOI Listing

Publication Analysis

Top Keywords

lower leg
16
thigh deceleration
12
leg acceleration
12
high front
8
front kick
8
proximal segments
8
segments accelerate
8
distal segments
8
proximal segment
8
segment deceleration
8

Similar Publications

HIV-related mortality has fallen due to scale-up of antiretroviral therapy (ART), so more women living with HIV (WLH) now live to reach menopause. Menopausal estrogen loss causes bone loss, as do HIV and certain ART regimens. However, quantitative bone data from WLH are few in Africa.

View Article and Find Full Text PDF

Study Design: Retrospective cohort study.

Objective: Frailty is defined as a state of minimal "physiologic reserve." The modified 5 factor frailty index (mFI-5) is a recently proposed metric for assessing frailty and has been previously studied as a predictor of morbidity and mortality.

View Article and Find Full Text PDF

Purpose: To investigate potential mechanisms of a digital rehabilitation intervention associated with improved mobility among adults undertaking rehabilitation.

Materials And Methods: Causal mediation analysis of the AMOUNT trial (ACTRN12614000936628). Participants were randomised to digitally-enabled rehabilitation (virtual reality video games, activity monitors, and handheld computer devices prescribed by a physiotherapist) and usual care or usual care alone.

View Article and Find Full Text PDF

Background: This is a novel rat study using native peptide therapy, focused on reversing quadriceps muscle-to-bone detachment to reattachment and stable gastric pentadecapeptide BPC 157 per-oral therapy for shared muscle healing and function restoration.

Methods: Pharmacotherapy recovering various muscle, tendon, ligament, and bone lesions, and severed junctions (i.e.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the effects of a 12-week self-designed exercise game intervention on the kinematic and kinetic data of the supporting leg in preschool children during the single-leg jump.

Methods: Thirty 5- to 6-year-old preschool children were randomly divided into an experimental group (EG) and a control group (CG). The BTS SMART DX motion capture analysis system was used to collect single-leg jump data before the intervention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!