Angiotensin II receptor levels have been shown to vary with postoperative time in tissue harvested from full-thickness dermal excisional wounds on adult rats. This study examined the expression of AII receptors in a sutured wound model. Two full-thickness incisional wounds were made in the dorsal skin of adult Sprague-Dawley rats and sutured immediately under general anesthesia. The wound tissues were harvested at 0, 0.5, 1, 2, 4, 24 h and on days 2, 3, 4, 5, 7, and 10 after the wounding. The levels of 125I-Sar1.Ile8-AII bound to membrane preparations of the wound tissues decreased at early time points (from 0.5 to 4 h), increased from day 1 to day 7, and returned to nonsurgical levels by day 10. Competitive binding studies showed that the receptors were predominantly of the AT1 receptor subtype. These results suggest that an immediate and transient reduction in AII receptor expression occurred after wounding, followed by an increase in the number of AII receptors that was maintained for 5 to 7 days postoperatively. Because these data are consistent with those observed after excisional wounding, temporal changes in AII receptor expression may be integral to the process of wound healing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/08941939609025862 | DOI Listing |
J Immunother Cancer
January 2025
Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
Background: B-Raf proto-oncogene, serine/threonine kinase (BRAF)-mutant microsatellite stable (MSS) colorectal cancer (CRC) constitutes a distinct CRC subgroup, traditionally perceived as minimally responsive to standard therapies. Recent clinical attempts, such as BRAF inhibitors (BRAFi) monotherapy and combining BRAFi with other inhibitors, have yielded unsatisfactory efficacy. This study aims to identify a novel therapeutic strategy for this challenging subgroup.
View Article and Find Full Text PDFJ Allergy Clin Immunol
January 2025
Institute of Human Genetics, UMR9002, CNRS and Montpellier University; Montpellier, France; Montpellier University; Montpellier, France; Immunology Department, University Hospital; Nîmes, France. Electronic address:
Background: We have recently shown that, during acute severe COVID-19, SARS-CoV-2 spike protein (S) induces a cascade of events resulting in T cell apoptosis. Indeed, by neutralizing the protease activity of its receptor, ACE2, S induces an increase in circulating Angiotensin II (AngII), resulting in monocytic release of reactive oxygen species (ROS) and programmed T cell death.
Objective: Here, we tested whether SARS-CoV-2 mRNA vaccines, known to cause the circulation of the vaccine antigen, S-protein receptor binding domain (RBD), might trigger the same cascade.
Drug Dev Res
February 2025
South University School of Pharmacy, Savannah, Giorgia, USA.
KRAS is a proto-oncogene that is found to be mutated in 15% of all metastatic cancers with high prevalence in pancreatic, lung, and colorectal cancers. Additionally, patients harboring KRAS mutations respond poorly to standard cancer therapy. As a result, KRAS is seen as an attractive target for targeted anticancer therapy.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Department of Cardiothoracic Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou City, Hubei Province, China.
Abdominal aortic aneurysm (AAA) is a severe cardiovascular disease (CVD) that is partly attributable to endothelial dysfunction, inflammatory response, and angiogenesis. G protein-coupled receptor 4 (GPR4), a proton-sensitive G protein-coupled receptor that is abundantly expressed in vascular endothelial cells, has been associated with numerous physiological functions. Nevertheless, its potential involvement in the development of AAA remains unexplored.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea; Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!