Infectious bursal disease virus (IBDV) has become a major problem in recent years. Conventional vaccines make use of attenuated or inactivated viral strains, but these are gradually losing their effectiveness. We investigated the possibility of using purified VP2, a subunit of IBDV structural protein expressed in insect cells, as a vaccine. The VP2 gene was cloned into pAcYM1. The cloned gene was expressed in a baculovirus system, giving rise to a high quantity of recombinant VP2 (rVP2) protein. The length of the VP2 is 453 amino acids, and it contains two additional amino acids of the baculovirus at the carboxyl terminus. The molecular mass of the protein is about 48 kD. The rVP2 protein reacted with antibodies raised against viral VP2 and had a similar molecular weight. This protein was tested in a controlled vaccination experiment and compared with an inactivated commercial vaccine. High levels of antibodies were raised by the vaccinated birds. The vaccinated birds were challenged with a pathogenic viral strain. rVP2-vaccinated chickens exhibited high resistance to the virus. No mortality or weight changes in the bursa of Fabricius were observed in the vaccinated birds, whereas in the negative control birds, vaccinated with phosphate buffer, up to 50% mortality was found. Higher levels of antibodies were found by enzyme-linked immunosorbent assay in birds vaccinated with rVP2 compared with those vaccinated with the commercial vaccine. This study suggests the potential use of the isolated rVP2 as a subunit vaccine.

Download full-text PDF

Source

Publication Analysis

Top Keywords

vaccinated birds
12
birds vaccinated
12
infectious bursal
8
bursal disease
8
disease virus
8
rvp2 protein
8
amino acids
8
antibodies raised
8
commercial vaccine
8
levels antibodies
8

Similar Publications

Background: Maintaining gut health is a persistent and unresolved challenge in the poultry industry. Given the critical role of gut health in chicken performance and welfare, there is a pressing need to identify effective gut health intervention (GHI) strategies to ensure optimal outcomes in poultry farming. In this study, across three broiler production cycles, we compared the metagenomes and performance of broilers provided with ionophores (as the control group) against birds subjected to five different GHI combinations involving vaccination, probiotics, prebiotics, essential oils, and reduction of ionophore use.

View Article and Find Full Text PDF

Background: The rapid mutation of avian influenza virus (AIV) poses a significant threat to both the poultry industry and public health. Herein, we have successfully developed an mRNA-LNPs candidate vaccine for H5 subtype highly pathogenic avian influenza and evaluated its immunogenicity and protective efficacy.

Results: In experiments on BALB/c mice, the vaccine candidate elicited strong humoral and a certain cellular immune responses and protected mice from the heterologous AIV challenge.

View Article and Find Full Text PDF

Dermanyssus gallinae (D. gallinae), the poultry red mite (PRM), is a haematophagous pest infesting poultry and wild birds. In studies of the biology of D.

View Article and Find Full Text PDF

A major health and financial burden in the chicken sector is salmonella infection. It is difficult to create an oral vaccination that can provide strong intestinal mucosal immunity in birds, particularly cross-protection against several Salmonella serotypes. As a result, the poultry industry needs a powerful oral vaccination platform that uses live bacterial vectors to prevent various Salmonella serotypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!