Previous physiological studies have demonstrated that inputs from different sensory modalities converge on individual neurons in the superior colliculus. Moreover, in anesthetized, paralyzed animals, those tectal neurons which are most directly connected to brain stem circuits mediating orienting eye and head movements are highly likely to exhibit significant integration of sensory inputs from multiple modalities. The purpose of the present study was to examine the responses of tectal neurons in the alert cat when visual and auditory stimuli were presented as targets for ocular fixation and orienting responses. For comparison to previous work in anesthetized, paralyzed animals, we also examined the responses of tectal neurons to the presentation of these stimuli during periods when the cats voluntarily maintained their eyes near primary position in the absence of a fixation target. Under these conditions, there were significant differences between the strength of the response to the simultaneous presentation of visual and auditory targets and the strength of response to the most effective unimodal stimulus in about 40% of the cells tested. Many tectal neurons also responded tonically during fixation of visual, auditory and bimodal targets, and some of these also exhibited significant bimodal interactions. However, among individual neurons which responded phasically to stimulus onset or offset and tonically during fixation, there was only a weak correlation between the extent of bimodal interaction under the two conditions. Finally, among saccade-related neurons, the magnitude of saccade-related activity was only slightly affected when a biomodal target was used to elicit a saccade, and the extent of bimodal interactions was generally less than was found for the onset and offset of sensory targets. Such multisensory interactions can be significant for behavior. Indeed, simply using a multisensory target has been shown to influence the probability and latency of overt orienting responses, although the extent of such effects will probably vary across both tasks and stimulus conditions. Strong multi-sensory interactions are most likely to occur when low intensity stimuli are used. Our use of moderately intense sensory stimuli probably accounts for our finding of a relatively small percentage of cells in which bimodal responses were greater than the sum of their unimodal responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0079-6123(08)63328-2 | DOI Listing |
J Neurosci
January 2025
Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 9 Gronostajowa street, 30-387 Kraków, Poland.
Dopaminergic (DA) neurons of the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) play a crucial role in controlling animals' orienting and approach behaviors toward relevant environmental stimuli. The ventral midbrain receives sensory input from the superior colliculus (SC), a tectal region processing information from contralateral receptive fields of various modalities. Given the significant influence of dopamine release imbalance in the left and right striatum on animals' movement direction, our study aimed to investigate the lateralization of the connection between the lateral SC and the midbrain DA system in male rats.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
November 2024
Center for Regenerative Therapies at TU Dresden(CRTD), Dresden, Germany.
Proc Natl Acad Sci U S A
November 2024
Department of Neuroscience, Dorris Neuroscience Center, Scripps Research Institute, La Jolla, CA 92037.
J Physiol
October 2024
School of Psychology & Neuroscience, University of Glasgow, Glasgow, UK.
Head direction (HD) neurons, signalling facing direction, generate a signal that is primarily anchored to the outside world by visual inputs. We investigated the route for visual landmark information into the HD system in rats. There are two candidates: an evolutionarily older, larger subcortical retino-tectal pathway and a more recently evolved, smaller cortical retino-geniculo-striate pathway.
View Article and Find Full Text PDFFluorescent and non-fluorescent neural tract tracers enable the investigation of neural pathways in both peripheral and central nervous systems in laboratory animals demonstrating images with high resolution and great anatomic precision. Anterograde and retrograde viral tracers are important cutting-edge tools for neuroanatomical mapping. The optogenetic consists of an advanced alternative for in vivo neural tract tracing procedures, fundamentally considering the possibility to dissect and modulate pathways either exciting or inhibiting neural circuits in laboratory animals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!