Café-au-lait macules are skin lesions known to resist all kinds of treatment. Green light at a wavelength of 511 nm from a copper vapour laser through a built-in computerized scanner (SCANALL) was employed to treat café-au-lait-macules in 16 patients. The laser was used in continuous mode with a mean energy density of 8.9 J/cm2 (range 7-22 J/cm2). The mean number of treatment sessions was two. The response was good to excellent in 15 cases and poor in one. Transient hyperpigmentation at the periphery and temporary non-homogeneous hypopigmentation at the centre of the treated area was observed in some cases. These eventually returned to normal after a few months, without any textural change. Pre- and postoperative histological finding are also presented. There was no recurrence at a mean follow-up time of 22 months. Copper vapour laser is an effective modality for the treatment of café-au-lait macules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-2133.1996.d01-1103.x | DOI Listing |
Sensors (Basel)
January 2025
Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea.
This study presents the fabrication of a sustainable flexible humidity sensor utilizing chitosan derived from mealworm biomass as the primary sensing material. The chitosan-based humidity sensor was fabricated by casting chitosan and polyvinyl alcohol (PVA) films with interdigitated copper electrodes, forming a laminate composite suitable for real-time, resistive-type humidity detection. Comprehensive characterization of the chitosan film was performed using Fourier-transform infrared (FTIR) spectroscopy, contact angle measurements, and tensile testing, which confirmed its chemical structure, wettability, and mechanical stability.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China.
Copper-based halides have attracted significant attention due to their unique photophysical properties and diverse coordination configurations. However, enhancing water stability and modulating structural transitions in cuprous halide materials remain challenging. In this work, we successfully synthesized three copper(I) halides, (CHP)CuBr (L1, [CHP] = hexyltriphenylphosphonium), (CHP)CuBr (L2), and (CHP)CuI (L3), via solvent volatilization, demonstrating exceptional water stability even after 27 days of submersion.
View Article and Find Full Text PDFNanoscale
January 2025
School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, P.R. China.
Currently, the study of cuproptosis focuses on the Cu-induced morphology changes in mitochondria (Mito), and the observation of the effect of endoplasmic reticulum (ER)-related Cu content on cuproptosis is relatively lacking. Herein, we have developed a hydroxyflavone (HF)-based NIR excited two-photon fluorescent probe, BHCO, that exhibits specific recognition of Cu with high resolution. BHCO-Cu (Cu2BC) can lead to DLAT protein aggregation, triggering cuproptosis.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering and Conn Center for Renewable Energy ResearchUniversity of Louisville, 132 Eastern Parkway, Louisville, Kentucky 40292, United States.
We report a silicon anode for lithium-ion batteries consisting of a layer of 100% nanotubes directly bonded to copper foil. The process involved silicon deposition on a sacrificial zinc oxide nanorod film and removal of zinc oxide to produce a nanotube film directly on thin copper foils. The thickness of resulting films ranged from 9 to 20 μm with Si nanotubes having diameters of 200-400 nm and lengths of 2-10 μm.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China. Electronic address:
Postharvest fruit decay caused by pathogens is an important factor leading to product waste and economic losses, and fruit coating is considered an effective strategy to solve this problem due to its simple operation and effectiveness. In this study, nano modified chitosan film (CSC) was created by mixing chitosan (CS) and copper oxide nanoparticles (CuO NPs) synthesized using abandoned Ficus carica fruit. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectra indicated the formation of intermolecular interactions between CS and CuO NPs in the composite film.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!