Induction of hepatic uptake of lipoprotein(a) by cholesterol-derivatized cluster galactosides.

Arterioscler Thromb Vasc Biol

Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, The Netherlands.

Published: December 1996

We have previously developed triantennary galactosides [TG(4A)C and TG(20A)C] that lower cholesterol levels by inducing liver uptake of lipoproteins via galactose-recognizing hepatic receptors. In this study, we have investigated whether this strategy could also be applied to reduce elevated serum levels of the atherogenic lipoprotein(a) [Lp(a)]. Both TG(4A)C and TG(20A)C could be incorporated into Lp(a). Incorporation of these glycolipids induced a rapid clearance of Lp(a). Concomitantly, the hepatic uptake of 125I-Lp(a) was enhanced from 4 +/- 1% to 80 +/- 4% of the injected dose for TG(4A)C (P < .0001) and to 17 +/- 4% of the injected dose for TG(20A)C (P < .006). TG(4A)C was apparently more effective in accelerating the serum decay of 125I-Lp(a), which may be caused by the higher hydrophobicity of this glycolipid relative to TG(20A)C. The TG(4A)C- and TG(20A)C-induced stimulation of the serum decay and liver uptake of 125I-Lp(a) could be significantly inhibited (> 85%) by preinjection of N-acetyl-galactosamine (150 mg), indicating that galactose-recognizing receptors are involved in the liver uptake of the glycolipid/Lp(a) complexes. The TG(4A)C-induced liver uptake of 125I-Lp(a) could be ascribed mainly to Kupffer cells (76 +/- 7%), whereas the parenchymal liver cell was the major site for liver uptake of TG(20A)C-laden 125I-Lp(a) (55 +/- 12%). In conclusion, both TG(4A)C and TG(20A)C stimulate the catabolism of 125I-Lp(a) by enhancing hepatic uptake. Because endocytosis of the substrate via galactose-recognizing receptors on Kupffer and parenchymal liver cells is followed by lysosomal degradation, we anticipate that both approaches for Lp(a) targeting may prove valuable as therapeutic modalities for lowering atherogenic levels of Lp(a).

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.atv.16.12.1552DOI Listing

Publication Analysis

Top Keywords

liver uptake
20
hepatic uptake
12
uptake 125i-lpa
12
uptake
8
tg4ac tg20ac
8
+/- injected
8
injected dose
8
serum decay
8
galactose-recognizing receptors
8
parenchymal liver
8

Similar Publications

As the main inhibitory neurotransmission system, the GABAergic system poses an interesting yet underutilized target for molecular brain imaging. While PET imaging of postsynaptic GABAergic neurons has been accomplished using radiolabeled benzodiazepines targeting the GABA receptor, the development of presynaptic radioligands targeting GABA transporter 1 (GAT1) has been unsuccessful thus far. Therefore, we developed a novel GAT1-addressing radioligand and investigated its applicability as a PET tracer in rodents.

View Article and Find Full Text PDF

Background: Sorafenib, an FDA-approved drug for advanced hepatocellular carcinoma (HCC), faces resistance issues, partly due to myeloid-derived suppressor cells (MDSCs) that enhance immunosuppression in the tumor microenvironment (TME).

Methods: Various murine HCC cell lines and MDSCs were used in a series of in vitro and in vivo experiments. These included subcutaneous tumor models, cell viability assays, flow cytometry, immunohistochemistry, and RNA sequencing.

View Article and Find Full Text PDF

Fatty acid oxidation-induced HIF-1α activation facilitates hepatic urate synthesis through upregulating NT5C2 and XDH.

Life Metab

October 2024

CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China.

Dyslipidemia affects approximately half of all people with gout, and prior Mendelian randomization analysis suggested a causal role for elevated triglycerides in hyperuricemia (HU), but the underlying mechanisms remain elusive. We hypothesize that dyslipidemia promotes hepatic urate biosynthesis in HU and gout and fatty acid (FA) oxidation (FAO) drives this process. Here we developed a targeted metabolomics to quantify major metabolites in purine metabolic pathway in the sera of a human cohort with HU, gout, and normaluricemic controls.

View Article and Find Full Text PDF

The role of surfactant proteins A and D (SP-A and SP-D) in lung clearance and translocation to secondary organs of inhaled nanoparticles was investigated by exposing SP-A and SP-D knockout (AKO and DKO) and wild type (WT) mice nose-only for 3 hours to an aerosol of 20 nm gold nanoparticles (AuNPs). Animals were euthanised at 0-, 1-, 7- and 28-days post-exposure. Analysis by inductively coupled plasma mass spectrometry (ICP-MS) of the liver and kidneys showed that extrapulmonary translocation was below the limits of detection.

View Article and Find Full Text PDF

Personalized statin therapy: Targeting metabolic processes to modulate the therapeutic and adverse effects of statins.

Heliyon

January 2025

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China.

Statins are widely used for treating lipid disorders and cardiovascular diseases. However, the therapeutic efficiency and adverse effects of statins vary among different patients, which numerous clinical and epidemiological studies have attributed to genetic polymorphisms in statin-metabolizing enzymes and transport proteins. The metabolic processes of statins are relatively complex, involving spontaneous or enzyme-catalyzed interconversion between more toxic lactone metabolites and active acid forms in the liver and bloodstream, influenced by multiple factors, including the expression levels of many metabolic enzymes and transporters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!