Background: Proteoglycans, consisting of glycosaminoglycan (GAG) side chains covalently linked to a protein core, are a major component of the extracellular matrix of the intestinal lamina propria.

Aims: This study investigated the effects of lamina propria T cell activation on the proteoglycan component of the matrix.

Methods: The high degree of sulphation of GAGs means that they are polyanionic and thus can be visualised in tissue sections by means of colloidal-gold labelled cationic probes.

Results: In human fetal small intestine there is a dense meshwork of anionic residues in the lamina propria and basement membrane. When explants of human fetal small intestine are cultured ex vivo, and resident lamina propria T cells are activated with pokeweed mitogen, mucosal destruction occurs within three days. This is associated with the rapid loss of anionic sites from the lamina propria. Dermatan sulphate proteoglycan is lost from the tissue and is present at increased concentrations in the organ culture supernatants, indicating that T cell activation has led to solubilisation of lamina propria proteoglycans. Tissue destruction and loss of anionic residues are inhibited in a dose dependent fashion by dexamethasone, and by the protease inhibitor, alpha 2 macroglobulin.

Conclusions: Proteolytic degradation of the lamina propria may therefore be a mechanism by which T cell hypersensitivity injures the intestinal mucosa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1383313PMC
http://dx.doi.org/10.1136/gut.39.2.284DOI Listing

Publication Analysis

Top Keywords

lamina propria
28
cell activation
12
proteolytic degradation
8
extracellular matrix
8
lamina
8
propria cell
8
human fetal
8
fetal small
8
small intestine
8
anionic residues
8

Similar Publications

To date, no prospective study has been conducted to compare the safety and effectiveness of endoscopic snare resection with an elastic band (ESR-EB) and endoscopic snare resection with a transparent cap (ESR-C) for treating gastric muscularis propria lesions. We aimed to compare the safety and effectiveness of ESR-EB with those of ESR-C for gastric muscularis propria lesions less than 10 mm in diameter. A total of 64 patients were enrolled prospectively from May 2023 to November 2023 at Shenzhen Hospital of Southern Medical University, the First Affiliated Hospital of Shantou University, and the People's Hospital of Zhongshan City.

View Article and Find Full Text PDF

Small intestinal organoids are similar to actual small intestines in structure and function and can be used in various fields, such as nutrition, disease, and toxicity research. However, the basal-out type is difficult to homogenize because of the diversity of cell sizes and types, and the Matrigel-based culture conditions. Contrastingly, the apical-out form of small intestinal organoids is relatively uniform and easy to manipulate without Matrigel.

View Article and Find Full Text PDF

Mental disorders are complex illnesses with multifactorial etiologies involving genetic and environmental components. This review focuses on cellular models derived from the olfactory epithelium as a promising tool to study the molecular mechanisms of some neuropsychiatric diseases. The authors consider cell lines allowing the identification of potential biomarkers and pathogenetic mechanisms of schizophrenia, bipolar disorder, and Alzheimer's disease.

View Article and Find Full Text PDF

In the context of the oral cavity, an organic layer known as the mucosal pellicle (MP) adheres to the surface of the oral epithelium, playing a pivotal role in lubricating and safeguarding oral tissues. The formation of the MP is driven by interactions between a transmembrane mucin known as MUC1, located on the oral epithelium, and salivary secreted mucin, namely MUC5B and MUC7. This study aimed to investigate the function of MUC1 and the influence of its structure on MP lubrication properties.

View Article and Find Full Text PDF

Mycobacterium abscessus (Mabs), an intracellular and opportunistic pathogen, is considered the most pathogenic fast-growing mycobacterium, and causes severe pulmonary infections in patients with cystic fibrosis. While bacterial factors contributing to its pathogenicity are well studied, the host factors and responses that worsen Mabs infection are not fully understood. Here, we report that Mabs systemic infection alters Drosophila melanogaster intestinal homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!