AI Article Synopsis

  • The study used low-voltage field-emission scanning electron microscopy (SEM) to analyze the stereocilia in the guinea-pig cochlear organ of Corti, employing various fixation techniques and dissection methods.
  • A combination of glutaraldehyde fixation and specific treatments yielded optimal imaging results, revealing intricate surface structures of stereocilia for the first time.
  • Key discoveries included various cross-links and tip links, as well as a network of filamentous structures that may represent glycocalyx, contributing to understanding mechanoelectrical transduction processes.

Article Abstract

The stereociliar structures of the guinea-pig cochlear organ of Corti were studied at low-voltage (1-5 kV) with field-emission scanning electron microscope (SEM) using various pre- and post-fixation methods, such as OTOTO (OsO4/thiocrbohydrazide/OsO4/thiocarbohydrazide/OsO4) and TAO (tannic acid/arginine/OsO4), and different dissection procedures of the cochlea. A perfusion and immersion pre-fixation with glutaraldehyde, in combination with removal of the bony wall and stria vascularis from the cochlea, followed by the TAO non-coating treatment gave the best result at 2 kV acceleration voltage. Due to these new technique, several interesting delicate structures of the stereocilia, in particular fine surface structures, were detected for the first time using SEM. These findings include the different types of cross-links and tip links, i.e., the fine surface morphology of the stereocilia and their attachments and imprints in the tectorial membrane (TM). One of the most interesting findings in this study is a network of long filamentous structures, which has been identified mainly at the top of the longest stereocilia and the undersurface of the TM and which may represent the glycocalyx. These findings and their possible implications in the process of mechanoelectrical transduction will be discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0378-5955(95)00155-9DOI Listing

Publication Analysis

Top Keywords

field-emission scanning
8
scanning electron
8
fine surface
8
low-voltage field-emission
4
electron microscopy
4
microscopy non-coated
4
non-coated guinea-pig
4
guinea-pig hair
4
hair cell
4
stereocilia
4

Similar Publications

Biomineralization reaction from nanosized calcium silicate: A new method for reducing dentin hypersensitivity.

J Dent Sci

January 2025

Department of Conservative Dentistry, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.

Background/purpose: This study assessed the ability of experimental materials consisting of dicalcium silicate (DCS) and tricalcium silicate (TCS) with nanosized particles to form intratubular crystals under phosphate-buffered saline (PBS) and the effect on dentin permeability reduction.

Materials And Methods: By isolating the cervical part of the extracted premolars, 195 specimens were obtained. Two experimental materials (DCS/TCS and TCS) were applied to the dentin surface by brushing and stored in PBS (n = 65).

View Article and Find Full Text PDF

In vitro evaluation of hypochlorous acid-silver nanoparticle waterline disinfectant for dental unit waterline disinfection.

BMC Chem

January 2025

Nursing Department, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, 430079, China.

Background: This work intended to assess the disinfection efficacy of hypochlorous acid (HA) and silver nanoparticles (AgNP) disinfectants in disinfecting the dental unit waterlines (DUWL) during comprehensive oral treatment and explore their potential applications in the oral medical environment.

Methods: Firstly, AgNP solution was prepared and evaluated through X-ray diffraction (XRD), field emission transmission electron microscope (FE-TEM), and stability tests. Subsequently, 15 dental units were selected and randomly assigned to three groups, each receiving a different disinfection method.

View Article and Find Full Text PDF

Versatile applications of cobalt and copper complexes of biopolymeric Schiff base ligands derived from chitosan.

Int J Biol Macromol

January 2025

Catalytic Applications Laboratory, Department of Chemistry, School of Basic Sciences, Faculty of Science, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, Rajasthan, India. Electronic address:

In the present study, biopolymeric Schiff base (SB) ligands were synthesized from chitosan and isatin. Consequently, their earth abundant transition metal complexes of cobalt and copper were synthesized. All compounds were extensively characterized using FTIR and UV spectroscopy, thermo-gravimetric (TG) analysis, X-ray powder diffraction (XRD) and FESEM (field emission scanning electron microscopy).

View Article and Find Full Text PDF

Colorectal cancer is a lethal malignancy that begins from acquired/inherent premalignant lesions. Thus, targeting these lesions at an early stage of the disease could impede the oncogenesis and maximize the efficacy. The present work underscores a combinatorial therapy of paclitaxel (PTX) and glycyrrhizin (GL) delivered via gelatin-derived core-shell nanoparticles [AC-PCL(GL + PTX)-GNPs] for effective management of precancerous lesions.

View Article and Find Full Text PDF

Magnetic nanoparticles of Nd2Fe14B prepared by ethanol-assisted wet ball milling technique.

Sci Rep

January 2025

Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

The magnetic material Nd2Fe14B is one of the strongest magnetic materials found in nature. The demand for the production of these nanoparticles is significantly high due to their exceptional properties. The aim of the present study is to synthesize magnetic nanoparticles of Nd2Fe14B using ethanol in the wet ball milling technique (WBMT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!