Complementary DNA coding for the channel-forming alpha-subunit of a large conductance Ca(2+)-activated K+ channel (maxi Kca channel) was cloned from bovine aortic smooth muscle cells. This cloned mammalian KCa channel (Bslo) and its homolog from Drosophila (Dslo) were expressed in the HEK293 human embryonic kidney cell line. Both Bslo and Dslo KCa channels were sensitive to inhibition by the internally applied serine proteinase inhibitors: bovine pancreatic trypsin inhibitor (BPTI, KD = 7.0 microM for Bslo and 2.6 microM for Dslo) and chicken ovoinhibitor (OI, KD = 1.5 microM for Bslo and 11.4 microM for Dslo). BPTI and OI are members of the Kunitz and Kazal families of proteinase inhibitors, respectively. The approximately 60-residue inhibitory domains of these proteins have a different tertiary structure except in the region of a loop formed by approximately 6 residues, in which the peptide backbone adopts a similar conformation complementary to the active site cleft of many serine proteinases. At the single-channel level, BPTI and OI were found to inhibit KCa channels by a similar mechanism involving the production of discrete low-conductance events. These two inhibitors also exhibited competitive behavior, suggesting that they bind to an overlapping site. Kinetic characterization revealed that the dissociation rate of BPTI from the bovine KCa channel is fast (k(off) = 0.41 s-1), whereas that from the Drosophila KCa channel is slow (k(off) = 9.0 x 10(-4) s-1) and indicative of a strong molecular interaction. The stable complex of BPTI and trypsin was inactive as a KCa channel inhibitor, further supporting the idea that the trypsin inhibitory loop of BPTI recognizes a specific site on the channel protein. These results lead to the conclusion that the alpha-subunit of maxi KCa channels contains a conserved proteinase inhibitor binding site. We hypothesize that this site corresponds to a C-terminal domain of the channel protein that structurally resembles serine proteinases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi961452k | DOI Listing |
Biochem Biophys Res Commun
January 2025
Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea. Electronic address:
Schizophrenia (SCZ) and bipolar disorder (BD) and are severe psychiatric conditions that contribute to disability and increased healthcare costs globally. Although first-, second-, and third-generation antipsychotics are available for treating BD and SCZ, most have various side effects unrelated to their unique functions. Many antipsychotics affect K channels (Kv, K, Kir, K, and other channels), which change the functions of various organs.
View Article and Find Full Text PDFCells
January 2025
Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell'Elce di Sotto 8, 06123 Perugia, Italy.
Biomedicines
December 2024
Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
Peptide Lv is a small endogenous secretory peptide with ~40 amino acids and is highly conserved among certain several species. While it was first discovered that it augments L-type voltage-gated calcium channels (LTCCs) in neurons, thus it was named peptide "Lv", it can bind to vascular endothelial growth factor receptor 2 (VEGFR2) and has VEGF-like activities, including eliciting vasodilation and promoting angiogenesis. Not only does peptide Lv augment LTCCs in neurons and cardiomyocytes, but it also promotes the expression of intermediate-conductance K channels (K3.
View Article and Find Full Text PDFToxins (Basel)
November 2024
Laboratorio de Neurofarmacología Marina, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Mexico.
Toxins from snails are peptides characterized by a great structural and functional diversity. They have a high affinity for a wide range of membrane proteins such as ion channels, neurotransmitter transporters, and G protein-coupled receptors. Potassium ion channels are integral proteins of cell membranes that play vital roles in physiological processes in muscle and neuron cells, among others, and reports in the literature indicate that perturbation in their function (by mutations or ectopic expression) may result in the development and progression of different ailments in humans.
View Article and Find Full Text PDFProstaglandins Other Lipid Mediat
January 2025
Department of Biology, College of Science, University of Zakho, Duhok, Kurdistan Region, Iraq; Department of Biology, College of Science, University of Nawroz, Duhok, Kurdistan Region, Iraq.
Introduction: Aberrant vascular function and cancer growth are closely related, with nitric oxide (NO) being a key factor in vascular tone regulation. This study provides Novel insights into the distinctive mechanisms underlying cancer-associated vascular dysfunction by investigating the involvement of potassium (K) channels in NO-mediated vasorelaxation within arteries supplying colon cancer.
Methods: Arterial segments from colon cancer patients were isolated and sectioned into rings, these rings were mounted in an organ bath filled with Krebs' solution and maintained at 37°C.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!