To enhance our understanding of the autosomal recessive limb-girdle muscular dystrophy (LGMD), patients from six genetically distinct forms (LGMD2A to LGMD2F) were studied with antibodies directed against four sarcoglycan subunits (alpha-, beta-, gamma-, delta-SG), dystrophin, beta-dystroglycan (beta-DG) and merosin. All patients with LGMD2A and 2B had a mild clinical course while those with a primary sarcoglycan mutation (LGMD2C to 2F) had a range of clinical severity. Dystrophin and merosin immunofluorescence pattern was positive in patients with all six AR LGMDs. The majority of patients with a severe Duchenne-like phenotype presented total absence of the SG complex. However, some exceptions were found in 13q linked patients, indicating that the presence of a certain labelling for components of the SG may not be prognostic for a milder phenotype. The observation that the primary absence of alpha-SG results in the total absence of beta- and delta-SG but not of gamma-SG suggests that the alpha-, beta- and delta-subunits of sarcoglycan may be more closely associated. A secondary reduction in dystrophin amount was seen in patients with primary sarcoglycan mutations, which was most marked in patients with primary beta-, gamma- and delta-SG deficiencies. In contrast, beta-DG staining was retained in all patients, suggesting that the association between SG and DG subcomplexes is not so strong. Based on the above findings, we have refined the model for the interaction among the known glycoproteins of the sarcoglycan complex, within the DGC.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/5.12.1963DOI Listing

Publication Analysis

Top Keywords

sarcoglycan complex
8
autosomal recessive
8
recessive limb-girdle
8
limb-girdle muscular
8
patients
8
alpha- beta-
8
beta- gamma-
8
gamma- delta-sg
8
primary sarcoglycan
8
total absence
8

Similar Publications

Sarcoglycanopathies are rare forms of severe muscular dystrophies currently without a therapy. Mutations in sarcoglycan (SG) genes cause the reduction or absence of the SG-complex, a tetramer located in the sarcolemma that plays a protective role during muscle contraction. Missense mutations in SGCA, which cause α-sarcoglycanopathy, otherwise known as LGMD2D/R3, lead to folding defective forms of α-SG that are discarded by the cell quality control.

View Article and Find Full Text PDF

Sarcoglycans are enriched at the neuromuscular junction in a nerve-dependent manner.

Cell Death Dis

January 2025

Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy.

Sarcoglycanopathies are heterogeneous proximo-distal diseases presenting severe muscle alterations. Although there are 6 different sarcoglycan isoforms, sarcoglycanopathies are caused exclusively by mutations in genes coding for one of the four sarcoglycan transmembrane proteins (alpha, beta, gamma and delta) forming the sarcoglycan complex (SGC) in skeletal and cardiac muscle. Little is known about the different roles of the SGC beyond the dystrophin glycoprotein complex (DGC) structural role.

View Article and Find Full Text PDF

Limb-girdle muscular dystrophy type 2E/R4 (LGMD2E/R4) is a rare disease that currently has no cure. It is caused by defects in the gene, mainly missense mutations, which cause the impairment of the sarcoglycan complex, membrane fragility, and progressive muscle degeneration. Here, we studied the fate of some β-sarcoglycan (β-SG) missense mutants, confirming that, like α-SG missense mutants, they are targeted for degradation through the ubiquitin-proteasome system.

View Article and Find Full Text PDF

Profiling of pathogenic variants in Japanese patients with sarcoglycanopathy.

Orphanet J Rare Dis

January 2025

Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.

Background: Sarcoglycanopathies (SGPs) are limb-girdle muscular dystrophies (LGMDs) that can be classified into four types, LGMDR3, LGMDR4, LGMDR5, and LGMDR6, caused by mutations in the genes, SGCA, SGCB, SGCG, and SGCD, respectively. SGPs are relatively rare in Japan. This study aims to profile the genetic variants that cause SGPs in Japanese patients.

View Article and Find Full Text PDF

Introduction And Importance: In Morocco, diagnosing Gamma Sarcoglycanopathies mainly relies on histopathological analysis of muscle biopsies due to limited genetic and molecular research access. This study highlights the significance of muscle biopsies and explores potential predictive factors and possible correlation between histopathological abnormalities and clinical phenotypes.

Case Presentation: Muscle biopsies of six patients diagnosed with γ-sarcoglycanopathy were collected over two years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!