Nitric oxide is synthesized from the amino acid I-arginine by a family of enzymes, the nitric oxide synthases. The synthesis of nitric oxide by vascular endothelium is responsible for the vasodilatator tone that is essential for the regulation of blood pressure. NO also contributes to the control of platelet aggregation and the regulation of cardiac contractility. These actions are all mediated by the activation of soluble guanylate cyclase and the consequent increase in the concentration of cGMP in target cells. Several studies suggests that some diseases are related to defects in the generation or action of nitric oxide. Some of the features of septic shock, including hypotension, vascular hyporeactivity, myocardial depression and tissue damage appears to result from excess production of NO. Controlled clinical trials to assess the effects of nitric oxide synthase inhibitors on mortality and morbidity in septic shock seem justified and are already planned.

Download full-text PDF

Source

Publication Analysis

Top Keywords

nitric oxide
20
septic shock
8
nitric
5
oxide
5
[nitric oxide--a
4
oxide--a basic
4
basic mediator
4
mediator vasodilation
4
vasodilation septic
4
septic shock]
4

Similar Publications

Glomerular endothelial cells (GECs) are pivotal in developing glomerular sclerosis disorders. The advancement of focal segmental glomerulosclerosis (FSGS) is intimately tied to disruptions in lipid metabolism. Sphingosine-1-phosphate (S1P), a molecule transported by high-density lipoproteins (HDL), exhibits protective effects on vascular endothelial cells by upregulating phosphorylated endothelial nitric oxide synthase (p-eNOS) and enhancing nitric oxide (NO) production.

View Article and Find Full Text PDF

Early depressive symptoms within the first days after acute myocardial infarction (AMI) are mainly manifested with performance parameters (lack of energy, concentration difficulties, reduction in physical functioning). Homoarginine (hArg), a non-proteinogenic amino acid, might increase the availability of nitric oxide (NO). NO controls vasodilatation, blood flow, mitochondrial respiration and improves performance.

View Article and Find Full Text PDF

Reproductive toxicity of perfluorobutane sulfonate in zebrafish (Danio rerio): Impacts on oxidative stress, hormone disruption and HPGL axis dysregulation.

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India. Electronic address:

Per and polyfluoroalkyl substances (PFAS) are anthropogenic chemicals extensively used in consumer products. Perfluorobutane sulfonate (PFBS), a short-chain PFAS, has been introduced as an alternative to long-chain PFAS, but limited studies have investigated its reproductive toxicity in fish. In this study, adult zebrafish were exposed to PFBS at concentrations of 0.

View Article and Find Full Text PDF

COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), primarily manifests as a flu-like illness with lung injury, often necessitating supplemental oxygen. Elderly individuals and those with pre-existing cardiovascular diseases are at increased risk of mortality. The endothelial barrier disruption observed in patients indicates systemic viral invasion and widespread endotheliitis.

View Article and Find Full Text PDF

This study explored the vasodilatory mechanisms of the sodium-glucose cotransporter-2 inhibitor remogliflozin using femoral arteries of rabbits. Remogliflozin dilated femoral arterial rings pre-contracted with phenylephrine in a concentration-dependent manner. Pretreatment with the Ca-sensitive K channel inhibitor (paxilline), the ATP-sensitive K channel inhibitor (glibenclamide), or the inwardly rectifying K channel inhibitor (Ba) did not alter the vasodilatory effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!