We tested the effect of high-Ca2+ diet on blood pressure and responses of mesenteric arterial rings in vitro in established deoxycorticosterone (DOC)-NaCl hypertension. Ca2+ supplementation (2.5%) of Wistar rats, which was commenced 8 wk after initiation of DOC-NaCl treatment (Ca(2+)-DOC group), reversed the development of hypertension, whereas in animals ingesting a normal diet (1.1% Ca2+; DOC group) blood pressure continued to rise until the end of the 12-wk study. In norepinephrine-precontracted arterial rings, relaxations to acetylcholine (ACh) and sodium nitroprusside were attenuated in the DOC group, but these responses were significantly improved by Ca2+ supplementation. The nitric oxide (NO) synthesis inhibitor NG-nitro-L-arginine methyl ester, in the presence of diclofenac, totally abolished ACh-induced relaxations in the DOC group but only attenuated them in the Ca(2+)-DOC group. The remaining relaxation was further inhibited by apamin, an inhibitor of Ca(2+)-activated K+ channels, and practically abolished after blockade of ATP-dependent K+ channels by glyburide. Interestingly, when endothelium-dependent hyperpolarization was prevented using precontractions induced by KCl, no differences were found in relaxations to ACh between the groups. In conclusion, high-Ca(2+) diet effectively reduced blood pressure in DOC-NaCl hypertension and concomitantly enhanced arterial relaxation. Because the relaxations to ACh in the Ca(2+)-DOC group were augmented in the absence and presence of NO synthesis inhibition but not under conditions of prevented hyperpolarization, these enhanced relaxations could be attributed to promoted endothelium-dependent hyperpolarization in the Ca(2+)-supplemented animals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.1996.270.4.H1250 | DOI Listing |
ISRN Nutr
June 2014
Food Toxicology and Contaminants Department, National Research Center, Dokki, Cairo 12311, Egypt.
This study was conducted to evaluate the total phenolic compounds, the antioxidant properties, and the hepatorenoprotective potential of Calendula officinalis extract against aflatoxins (AFs-) induced liver damage. Six groups of male Sprague-Dawley rats were treated for 6 weeks included the control; the group fed AFs-contaminated diet (2.5 mg/kg diet); the groups treated orally with Calendula extract at low (CA1) and high (CA2) doses (500 and 1000 mg/kg b.
View Article and Find Full Text PDFNiger J Physiol Sci
November 2010
Department of Physiology, College of Medicine, University of Ilorin, Ilorin, Nigeria.
Administration of oral contraceptive (OC) has been associated with body fluid retention and in high doses over a long period, promotes hypertension. This present investigation tests the hypothesis that the dietary calcium supplementation increases salt and water excretion in OC (norgestre/ethinylestradiol) treated 32 female albino rats randomly distributed into four (1-4) groups of 8 rats each: Control, OC-treated, OC-treated+ Calcium diet fed and Calcium diet fed only respectively. OC was administered to the appropriate groups by gavage.
View Article and Find Full Text PDFJ Environ Biol
April 2007
Department of Zoology and Wildlife Conservation, University of Dar es Salaam, Dar es Salaam-35064, Tanzania.
The effects of cadmium administered via ambient water (10 microg/l) or food (10 microgCd/fish/day) on plasma calcium, corpuscles of Stannius and bony tissues of Oreochromis mossambicus acclimated to low calcium (0.2 mM) and high calcium (0.8 mM) water were studied for 2, 4, 14 and 35 days.
View Article and Find Full Text PDFJ Cardiovasc Pharmacol
September 2003
Department of Pharmacological Sciences, Medical School, University of Tampere, Finland.
This 8-week study investigated the effects of increasing dietary Ca2+ content from 1.0% to 3.0% and hypercalcemia induced by oral 1alpha-OH vitamin D3 (1OH-D3, 1.
View Article and Find Full Text PDFCarcinogenesis
July 1998
Department of Toxicology, University of Würzburg, Germany.
The tumour promoting properties of carcinogenic 2-acetylaminofluorene (AAF) in rat liver are essentially unknown. We proposed that mitochondria are a target for the cytotoxic effects of 2-nitrosofluorene (NOF), a metabolite of AAF, since NOF induces a redox-cycle at complex I and complex III of the respiratory chain, and impairs respiration and oxidative phosphorylation. We now demonstrate that NOF is a potent inducer of the mitochondrial permeability transition pore (PTP) in isolated mitochondria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!