The genomic locus containing the murine calbindin-D28K gene has been isolated and partially characterized. Genomic cloning revealed an exon/intron chromosomal structure very similar to the avian gene previously described. The ability of the calbindin-D28K upstream region to direct cell-specific expression was tested in vivo. Varying lengths of upstream sequence were used to drive expression of lacZ in transgenic mice. Characterization of 23 transgenic mouse lines revealed that even as much as 3.0 kb of upstream sequence was unable to direct expression independently of integration site effects, suggesting the absence of important elements. Despite the small number of expressing transgenic lines and the great variability, there was a tendency of cell specificity of transgene expression exhibited in distinct brain regions. In the cerebellum, Purkinje cell-specific expression was observed with the shortest (1.0 kb) upstream sequence tested. Specificity of transgene expression in Purkinje cells was abolished with longer portions of upstream sequence. The same observation was made for transgene expression in granule cells of the dentate gyrus, while the opposite effect was observed for expression in CA1 hippocampal cells. The absence of any transgenic lines exhibiting appropriate transgene expression in the kidney suggested that the VDREs described previously for the murine calbindin gene are not sufficient to direct kidney expression in vivo. It is concluded that 3.0 kb of calbindin upstream sequence includes the regulatory elements dictating a portion of cell-specificity in the CNS of transgenic mice, albeit lacking regions that allow expression independently of chromosomal effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0169-328x(95)00259-u | DOI Listing |
Commun Biol
January 2025
Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
The primary immune constituents in the brain, microglia and macrophages, are the target for HIV in people and simian immunodeficiency virus (SIV) in nonhuman primates. This infection can lead to neurological dysfunction, known as HIV-associated neurocognitive disorder (HAND). Given the gaps in our knowledge on how these cells respond in vivo to CNS infection, we perform single-cell multiomic sequencing, including gene expression and ATAC-seq, on myeloid cells from the brains of rhesus macaques with SIV-induced encephalitis (SIVE) as well as uninfected controls.
View Article and Find Full Text PDFSignal Transduct Target Ther
January 2025
Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China.
Dry eye disease (DED) is a prevalent inflammatory condition significantly impacting quality of life, yet lacks effective pharmacological therapies. Herein, we proposed a novel approach to modulate the inflammation through metabolic remodeling, thus promoting dry eye recovery. Our study demonstrated that co-treatment with mesenchymal stem cells (MSCs) and thymosin beta-4 (Tβ4) yielded the best therapeutic outcome against dry eye, surpassing monotherapy outcomes.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China. Electronic address:
The basic helix-loop-helix (bHLH) transcription factors (TFs) play a crucial regulatory role in the growth and development of plants, as well as in their response to environmental stresses. In this study, we identified 94 ChbHLHs from Cerasus humilis, an economically valuable tree native to northern China. We analyzed their evolutionary relationships, gene structures, chromosome distributions, promoter cis-regulatory elements, and collinearity.
View Article and Find Full Text PDFPLoS Biol
January 2025
RNA Virus Replication Laboratory, The Francis Crick Institute, London, United Kingdom.
Coronaviruses express their structural and accessory genes via a set of subgenomic RNAs, whose synthesis is directed by transcription regulatory sequences (TRSs) in the 5' genomic leader and upstream of each body open reading frame. In SARS-CoV-2, the TRS has the consensus AAACGAAC; upon searching for emergence of this motif in the global SARS-CoV-2 sequences, we find that it evolves frequently, especially in the 3' end of the genome. We show well-supported examples upstream of the Spike gene-within the nsp16 coding region of ORF1b-which is expressed during human infection, and upstream of the canonical Envelope gene TRS, both of which have evolved convergently in multiple lineages.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Background: The role of cancer-associated pericytes (CAPs) in tumor microenvironment (TME) suggests that they are potential targets for cancer treatment. The mechanism of CAP heterogeneity in esophageal squamous cell carcinoma (ESCC) remains unclear, which has limited the development of treatments for tumors through CAPs. Therefore, a comprehensive understanding of the classification, function, cellular communication and spatial distribution of CAP subpopulations in ESCC is urgently needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!