A novel interpretation of pulmonary arterial input impedance was evaluated for the lung as a fractal vascular network. We hypothesized that local sources of reflection introduce trends of global reflection into the input impedance spectra. These trends are related to the network topology, geometry, and design according to Rb = Rdx, where Rb is the branching ratio, Rd is the diameter ratio, and x is the fractal dimension quantifying design. Simulations using values of Rd and x, which were derived morphometrically, confirmed two patterns of global reflection: a continuous trend attributed to a single effective site of reflection caused by frequency-dependent sources of impedance contrast and a discrete trend arising from a longitudinal distribution of frequency-independent sources of reflection. The continuous trend depended only on the network parameter Rd, whereas the discrete trend depended on Rd and x. Our results indicate that the impedance-matching properties of a deterministic pulmonary fractal network encode arterial geometry and topology via function and that typical values of Rd and x for the pulmonary circulation facilitate shear stress amplification in its peripheral vessels. Thus, inasmuch as shear forces may be involved in the endothelial mechanisms for pathological, or physiological, vascular remodeling, broadband input impedance analysis may reveal interactions between network organization and vascular function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jappl.1996.80.3.1033 | DOI Listing |
We present a wideband rectifying metasurface (RMS) with enhanced system efficiency for wireless power transmission and energy harvesting. The RMS consists of periodic arrays with integrated diodes, with a high input impedance matched with the diodes, thus eliminating the matching network between metasurface (MS) and rectifier. Besides, a unique harmonic feedback network is embedded in each unit cell, rectifying the high-order harmonic generated by the diode repeatedly, improving the total efficiency over a wide bandwidth.
View Article and Find Full Text PDFThis paper proposes a conformal high-efficiency ultra-thin flexible rectifying metasurface (RMS) with a simple structure applied for wireless power transferring (WPT), featuring polarization insensitivity and wide-angle incidence capabilities. The RMS unit adopts a rotationally symmetric structure consisting of double rings and cross-shaped elements, with two diodes placed in the gap of the cross-shaped to achieve polarization insensitivity. Simultaneously, by adjusting the dimensions of the "double ring and cross" structure, its output impedance is varied to achieve conjugate matching with the diode input impedance, thereby eliminating the impedance matching network.
View Article and Find Full Text PDFFood Chem
January 2025
College of Engineering, China Agricultural University, Beijing 100083, PR China. Electronic address:
Efficient, non-destructive and real-time meat freshness assessment has always been a hot research topic. This paper presents a novel approach for detecting lamb meat freshness using a flexible optoelectronic sensing system combined with an integrated learning model. We developed a flexible impedance sensing system and a flexible optical sensing system through laser direct writing and transfer technology.
View Article and Find Full Text PDFBiomed Microdevices
January 2025
Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA.
Wearable and implantable biosensors have rapidly entered the fields of health and biomedicine to diagnose diseases and physiological monitoring. The use of wired medical devices causes surgical complications, which can occur when wires break, become infected, generate electrical noise, and are incompatible with implantable applications. In contrast, wireless power transfer is ideal for biosensing applications since it does not necessitate direct connections between measurement tools and sensing systems, enabling remote use of the biosensors.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Faculty of Engineering Science, University of Bayreuth, 95440 Bayreuth, Germany.
Molding sand mixtures in the foundry industry are typically composed of fresh and reclaimed sands, water, and additives such as bentonite. Optimizing the control of these mixtures and the recycling of used sand after casting requires an efficient in-line monitoring method, which is currently unavailable. This study explores the potential of an AI-enhanced electrical impedance spectroscopy (EIS) system as a solution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!